Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2008, Article ID 328172, 16 pages
http://dx.doi.org/10.1155/2008/328172
Review Article

The PPAR-Platelet Connection: Modulators of Inflammation and Potential Cardiovascular Effects

1Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Box 608, Rochester, NY 14642, USA
2Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
3Cell Biology and Biochemistry, K4-12, Biological Sciences Division Battelle, Pacific Northwest Division, 902 Battelle Blvd, Richland, WA 99352, USA
4M&D-Hematology/Oncology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
5Department of Medicine, M&D-Cardiology Unit, University of Rochester Medical Center, 601 Elmwood Avenue, Box 679-ccmc, Rochester, NY 14642, USA

Received 14 August 2007; Accepted 6 November 2007

Academic Editor: Brian N. Finck

Copyright © 2008 S. L. Spinelli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. L. Bhatt, P. G. Steg, E. M. Ohman et al., “International prevalence, recognition, and treatment of cardiovascular risk factors in outpatients with atherothrombosis,” Journal of the American Medical Association, vol. 295, no. 2, pp. 180–189, 2006. View at Publisher · View at Google Scholar
  2. A. J. Lusis, “Atherosclerosis,” Nature, vol. 407, no. 6801, pp. 233–241, 2000. View at Publisher · View at Google Scholar
  3. R. P. Phipps, “Atherosclerosis: the emerging role of inflammation and the CD40-CD40 ligand system,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 13, pp. 6930–6932, 2000. View at Publisher · View at Google Scholar
  4. R. P. Phipps, L. Koumas, E. Leung, S. Y. Reddy, T. Blieden, and J. Kaufman, “The CD40-CD40 ligand system: a potential therapeutic target in atherosclerosis,” Current Opinion in Investigational Drugs, vol. 2, no. 6, pp. 773–777, 2001. View at Google Scholar
  5. D. M. Ray, S. L. Spinelli, J. J. O'Brien, N. Blumberg, and R. P. Phipps, “Platelets as a novel target for PPARγ ligands: implications for inflammation, diabetes, and cardiovascular disease,” BioDrugs, vol. 20, no. 4, pp. 231–241, 2006. View at Publisher · View at Google Scholar
  6. R. Ross, “Atherosclerosis—an inflammatory disease,” The New England Journal of Medicine, vol. 340, no. 2, pp. 115–126, 1999. View at Publisher · View at Google Scholar
  7. S. Danese, C. de la Motte, A. Sturm et al., “Platelets trigger a CD40-dependent inflammatory response in the microvasculature of inflammatory bowel disease patients,” Gastroenterology, vol. 124, no. 5, pp. 1249–1264, 2003. View at Publisher · View at Google Scholar
  8. T. Smith, G. Dhunnoo, I. Mohan, and V. Charlton-Menys, “A pilot study showing an association between platelet hyperactivity and the severity of peripheral arterial disease,” Platelets, vol. 18, no. 4, pp. 245–248, 2007. View at Publisher · View at Google Scholar
  9. K. T. Tan and G. Y. H. Lip, “The potential role of platelet microparticles in atherosclerosis,” Thrombosis and Haemostasis, vol. 94, no. 3, pp. 488–492, 2005. View at Publisher · View at Google Scholar
  10. A. I. Vinik, T. Erbas, T. S. Park, R. Nolan, and G. L. Pittenger, “Platelet dysfunction in type 2 diabetes,” Diabetes Care, vol. 24, no. 8, pp. 1476–1485, 2001. View at Publisher · View at Google Scholar
  11. Y. J. Lee, W. Jy, L. L. Horstman et al., “Elevated platelet microparticles in transient ischemic attacks, lacunar infarcts, and multi-infarct dementias,” Thrombosis Research, vol. 72, no. 4, pp. 295–304, 1993. View at Publisher · View at Google Scholar
  12. S. Nomura, S. Uehata, S. Saito, K. Osumi, Y. Ozeki, and Y. Kimura, “Enzyme immunoassay detection of platelet-derived microparticles and RANTES in acute coronary syndrome,” Thrombosis and Haemostasis, vol. 89, no. 3, pp. 506–512, 2003. View at Google Scholar
  13. F. Zeiger, S. Stephan, G. Hoheisel, D. Pfeiffer, C. Ruehlmann, and M. Koksch, “P-selectin expression, platelet aggregates, and platelet-derived microparticle formation are increased in peripheral arterial disease,” Blood Coagulation and Fibrinolysis, vol. 11, no. 8, pp. 723–728, 2000. View at Publisher · View at Google Scholar
  14. J. A. Coppinger, G. Cagney, S. Toomey et al., “Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions,” Blood, vol. 103, no. 6, pp. 2096–2104, 2004. View at Publisher · View at Google Scholar
  15. A. García, S. P. Watson, R. A. Dwek, and N. Zitzmann, “Applying proteomics technology to platelet research,” Mass Spectrometry Reviews, vol. 24, no. 6, pp. 918–930, 2005. View at Publisher · View at Google Scholar
  16. J. P. McRedmond, S. D. Park, D. F. Reilly et al., “Integration of proteomics and genomics in platelets: a profile of platelet proteins and platelet-specific genes,” Molecular & Cellular Proteomics, vol. 3, no. 2, pp. 133–144, 2004. View at Publisher · View at Google Scholar
  17. S. Kersten, B. Desvergne, and W. Wahli, “Roles of PPARs in health and disease,” Nature, vol. 405, no. 6785, pp. 421–424, 2000. View at Publisher · View at Google Scholar
  18. H. Inoue, X.-F. Jiang, T. Katayama, S. Osada, K. Umesono, and S. Namura, “Brain protection by resveratrol and fenofibrate against stroke requires peroxisome proliferator-activated receptor α in mice,” Neuroscience Letters, vol. 352, no. 3, pp. 203–206, 2003. View at Publisher · View at Google Scholar
  19. “Thiazolidinediones and cardiovascular disease,” The Medical Letter on Drugs and Therapeutics, vol. 49, no. 1265, pp. 57–58, 2007.
  20. S. R. Patel, J. H. Hartwig, and J. E. Italiano Jr., “The biogenesis of platelets from megakaryocyte proplatelets,” Journal of Clinical Investigation, vol. 115, no. 12, pp. 3348–3354, 2005. View at Publisher · View at Google Scholar
  21. M. M. Denis, N. D. Tolley, M. Bunting et al., “Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets,” Cell, vol. 122, no. 3, pp. 379–391, 2005. View at Publisher · View at Google Scholar
  22. D. V. Gnatenko, J. J. Dunn, S. R. McCorkle, D. Weissmann, P. L. Perrotta, and W. F. Bahou, “Transcript profiling of human platelets using microarray and serial analysis of gene expression,” Blood, vol. 101, no. 6, pp. 2285–2293, 2003. View at Publisher · View at Google Scholar
  23. N. Kieffer, J. Guichard, J.-P. Farcet, W. Vainchenker, and J. Breton-Gorius, “Biosynthesis of major platelet proteins in human blood platelets,” European Journal of Biochemistry, vol. 164, no. 1, pp. 189–195, 1987. View at Publisher · View at Google Scholar
  24. A. S. Weyrich, D. A. Dixon, R. Pabla et al., “Signal-dependent translation of a regulatory protein, Bcl-3, in activated human platelets,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 10, pp. 5556–5561, 1998. View at Publisher · View at Google Scholar
  25. S. Lindemann, N. D. Tolley, D. A. Dixon et al., “Activated platelets mediate inflammatory signaling by regulated interleukin 1ß synthesis,” Journal of Cell Biology, vol. 154, no. 3, pp. 485–490, 2001. View at Publisher · View at Google Scholar
  26. H. Brogren, L. Karlsson, M. Andersson, L. Wang, D. Erlinge, and S. Jern, “Platelets synthesize large amounts of active plasminogen activator inhibitor 1,” Blood, vol. 104, no. 13, pp. 3943–3948, 2004. View at Publisher · View at Google Scholar
  27. M. Camera, M. Frigerio, V. Toschi et al., “Platelet activation induces cell-surface immunoreactive tissue factor expression, which is modulated differently by antiplatelet drugs,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 9, pp. 1690–1696, 2003. View at Publisher · View at Google Scholar
  28. H. Schwertz, N. D. Tolley, J. M. Foulks et al., “Signal-dependent splicing of tissue factor pre-mRNA modulates the thrombogenecity of human platelets,” Journal of Experimental Medicine, vol. 203, no. 11, pp. 2433–2440, 2006. View at Publisher · View at Google Scholar
  29. O. Panes, V. Matus, C. G. Sáez, T. Quiroga, J. Pereira, and D. Mezzano, “Human platelets synthesize and express functional tissue factor,” Blood, vol. 109, no. 12, pp. 5242–5250, 2007. View at Publisher · View at Google Scholar
  30. J. M. Cholette, N. Blumberg, R. P. Phipps, M. P. McDermott, K. F. Gettings, and N. P. Lerner, “Developmental changes in soluble CD40 ligand,” Journal of Pediatrics. In Pres. View at Publisher · View at Google Scholar
  31. P. Libby, “Vascular biology of atherosclerosis: overview and state of the art,” The American Journal of Cardiology, vol. 91, no. 3, supplement 1, pp. 3–6, 2003. View at Publisher · View at Google Scholar
  32. P. Aukrust, F. Müller, T. Ueland et al., “Enhanced levels of soluble and membrane-bound CD40 ligand in patients with unstable angina. Possible reflection of T lymphocyte and platelet involvement in the pathogenesis of acute coronary syndromes,” Circulation, vol. 100, no. 6, pp. 614–620, 1999. View at Google Scholar
  33. F. Cipollone, A. Mezzetti, E. Porreca et al., “Association between enhanced soluble CD40L and prothrombotic state in hypercholesterolemia: effects of statin therapy,” Circulation, vol. 106, no. 4, pp. 399–402, 2002. View at Publisher · View at Google Scholar
  34. C. Heeschen, S. Dimmeler, C. W. Hamm et al., “Soluble CD40 ligand in acute coronary syndromes,” The New England Journal of Medicine, vol. 348, no. 12, pp. 1104–1111, 2003. View at Publisher · View at Google Scholar
  35. R. P. Phipps, J. Kaufman, and N. Blumberg, “Platelet derived CD154 (CD40 ligand) and febrile responses to transfusion,” The Lancet, vol. 357, no. 9273, pp. 2023–2024, 2001. View at Publisher · View at Google Scholar
  36. C. van Kooten and J. Banchereau, “CD40-CD40 ligand,” Journal of Leukocyte Biology, vol. 67, no. 1, pp. 2–17, 2000. View at Google Scholar
  37. J. Kaufman, S. L. Spinelli, E. Schultz, N. Blumberg, and R. P. Phipps, “Release of biologically active CD154 during collection and storage of platelet concentrates prepared for transfusion,” Journal of Thrombosis and Haemostasis, vol. 5, no. 4, pp. 788–796, 2007. View at Publisher · View at Google Scholar
  38. C. Stumpf, C. Lehner, S. Eskafi et al., “Enhanced levels of CD154 (CD40 ligand) on platelets in patients with chronic heart failure,” European Journal of Heart Failure, vol. 5, no. 5, pp. 629–637, 2003. View at Publisher · View at Google Scholar
  39. N. Varo, D. Vicent, P. Libby et al., “Elevated plasma levels of the atherogenic mediator soluble CD40 ligand in diabetic patients: a novel target of thiazolidinediones,” Circulation, vol. 107, no. 21, pp. 2664–2669, 2003. View at Publisher · View at Google Scholar
  40. R. J. Noelle, “CD40 and its ligand in host defense,” Immunity, vol. 4, no. 5, pp. 415–419, 1996. View at Publisher · View at Google Scholar
  41. P. André, K. S. Srinivasa Prasad, C. V. Denis et al., “CD40L stabilizes arterial thrombi by a ß3 integrin-dependent mechanism,” Nature Medicine, vol. 8, no. 3, pp. 247–252, 2002. View at Publisher · View at Google Scholar
  42. S. A. Kliewer, B. M. Forman, B. Blumberg et al., “Differential expression and activation of a family of murine peroxisome proliferator-activated receptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 15, pp. 7355–7359, 1994. View at Publisher · View at Google Scholar
  43. K. S. Srinivasa Prasad, P. André, M. He, M. Bao, J. Manganello, and D. R. Phillips, “Soluble CD40 ligand induces β3 integrin tyrosine phosphorylation and triggers platelet activation by outside-in signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 21, pp. 12367–12371, 2003. View at Publisher · View at Google Scholar
  44. L. L. Horstman, W. Jy, J. J. Jimenez, C. Bidot, and Y. S. Ahn, “New horizons in the analysis of circulating cell-derived microparticles,” Keio Journal of Medicine, vol. 53, no. 4, pp. 210–230, 2004. View at Publisher · View at Google Scholar
  45. J. Simak and M. P. Gelderman, “Cell membrane microparticles in blood and blood products: potentially pathogenic agents and diagnostic markers,” Transfusion Medicine Reviews, vol. 20, no. 1, pp. 1–26, 2006. View at Publisher · View at Google Scholar
  46. A. P. Bode, H. Sandberg, F. A. Dombrose, and B. R. Lentz, “Association of factor V activity with membranous vesicles released from human platelets: requirement for platelet stimulation,” Thrombosis Research, vol. 39, no. 1, pp. 49–61, 1985. View at Publisher · View at Google Scholar
  47. P. Siljander, O. Carpen, and R. Lassila, “Platelet-derived microparticles associate with fibrin during thrombosis,” Blood, vol. 87, no. 11, pp. 4651–4663, 1996. View at Google Scholar
  48. S. Nomura, N. N. Tandon, T. Nakamura, J. Cone, S. Fukuhara, and J. Kambayashi, “High-shear-stress-induced activation of platelets and microparticles enhances expression of cell adhesion molecules in THP-1 and endothelial cells,” Atherosclerosis, vol. 158, no. 2, pp. 277–287, 2001. View at Publisher · View at Google Scholar
  49. S. F. Mause, P. von Hundelshausen, A. Zernecke, R. R. Koenen, and C. Weber, “Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 7, pp. 1512–1518, 2005. View at Publisher · View at Google Scholar
  50. O. P. Barry, D. Praticò, R. C. Savani, and G. A. FitzGerald, “Modulation of monocyte-endothelial cell interactions by platelet microparticles,” Journal of Clinical Investigation, vol. 102, no. 1, pp. 136–144, 1998. View at Publisher · View at Google Scholar
  51. T. Scholz, U. Temmler, S. Krause, S. Heptinstall, and W. Lösche, “Transfer of tissue factor from platelets to monocytes: role of platelet-derived microvesicles and CD62P,” Thrombosis and Haemostasis, vol. 88, no. 6, pp. 1033–1038, 2002. View at Google Scholar
  52. M. J. VanWijk, E. VanBavel, A. Sturk, and R. Nieuwland, “Microparticles in cardiovascular diseases,” Cardiovascular Research, vol. 59, no. 2, pp. 277–287, 2003. View at Publisher · View at Google Scholar
  53. M. Diamant, R. Nieuwland, R. F. Pablo, A. Sturk, J. W. A. Smit, and J. K. Radder, “Elevated numbers of tissue-factor exposing microparticles correlate with components of the metabolic syndrome in uncomplicated type 2 diabetes mellitus,” Circulation, vol. 106, no. 19, pp. 2442–2447, 2002. View at Publisher · View at Google Scholar
  54. A. Janowska-Wieczorek, M. Majka, J. Kijowski et al., “Platelet-derived microparticles bind to hematopoietic stem/progenitor cells and enhance their engraftment,” Blood, vol. 98, no. 10, pp. 3143–3149, 2001. View at Publisher · View at Google Scholar
  55. H. Duez, J.-C. Fruchart, and B. Staels, “PPARs in inflammation, atherosclerosis and thrombosis,” Journal of Cardiovascular Risk, vol. 8, no. 4, pp. 187–194, 2001. View at Publisher · View at Google Scholar
  56. J. Padilla, K. Kaur, S. G. Harris, and R. P. Phipps, “PPAR-γ-mediated regulation of normal and malignant B lineage cells,” Annals of the New York Academy of Sciences, vol. 905, pp. 97–109, 2000. View at Google Scholar
  57. I. Issemann and S. Green, “Cloning of novel members of the steroid hormone receptor superfamily,” Journal of Steroid Biochemistry and Molecular Biology, vol. 40, no. 1–3, pp. 263–269, 1991. View at Publisher · View at Google Scholar
  58. O. Braissant, F. Foufelle, C. Scotto, M. Dauça, and W. Wahli, “Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-α, -β, and -γ in the adult rat,” Endocrinology, vol. 137, no. 1, pp. 354–366, 1996. View at Publisher · View at Google Scholar
  59. S. G. Harris and R. P. Phipps, “The nuclear receptor PPAR γ is expressed by mouse T lymphocytes and PPAR γ agonists induce apoptosis,” European Journal of Immunology, vol. 31, no. 4, pp. 1098–1105, 2001. View at Publisher · View at Google Scholar
  60. D. M. Ray, S. H. Bernstein, and R. P. Phipps, “Human multiple myeloma cells express peroxisome proliferator-activated receptor γ and undergo apoptosis upon exposure to PPARγ ligands,” Clinical Immunology, vol. 113, no. 2, pp. 203–213, 2004. View at Publisher · View at Google Scholar
  61. D. Auboeuf, J. Rieusset, L. Fajas et al., “Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-a in humans: no alteration in adipose tissue of obese and NIDDM patients,” Diabetes, vol. 46, no. 8, pp. 1319–1327, 1997. View at Publisher · View at Google Scholar
  62. U. Seedorf and J. Aberle, “Emerging roles of PPARδ in metabolism,” Biochimica et Biophysica Acta, vol. 1771, no. 9, pp. 1125–1131, 2007. View at Publisher · View at Google Scholar
  63. F. Akbiyik, D. M. Ray, K. F. Gettings, N. Blumberg, C. W. Francis, and R. P. Phipps, “Human bone marrow megakaryocytes and platelets express PPARγ, and PPARγ agonists blunt platelet release of CD40 ligand and thromboxanes,” Blood, vol. 104, no. 5, pp. 1361–1368, 2004. View at Publisher · View at Google Scholar
  64. F. Y. Ali, S. J. Davidson, L. A. Moraes et al., “Role of nuclear receptor signaling in platelets: antithrombotic effects of PPARß,” The FASEB Journal, vol. 20, no. 2, pp. 326–328, 2006. View at Publisher · View at Google Scholar
  65. S. A. Kliewer, K. Umesono, D. J. Noonan, R. A. Heyman, and R. M. Evans, “Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors,” Nature, vol. 358, no. 6389, pp. 771–774, 1992. View at Publisher · View at Google Scholar
  66. A. I. Shulman and D. J. Mangelsdorf, “Retinoid X receptor heterodimers in the metabolic syndrome,” The New England Journal of Medicine, vol. 353, no. 6, pp. 604–615, 2005. View at Publisher · View at Google Scholar
  67. J. Plutzky, “Inflammation in atherosclerosis and diabetes mellitus,” Reviews in Endocrine and Metabolic Disorders, vol. 5, no. 3, pp. 255–259, 2004. View at Publisher · View at Google Scholar
  68. N. Marx, H. Duez, J.-C. Fruchart, and B. Staels, “Peroxisome proliferator-activated receptors and atherogenesis: regulators of gene expression in vascular cells,” Circulation Research, vol. 94, no. 9, pp. 1168–1178, 2004. View at Publisher · View at Google Scholar
  69. G. Rizzo and S. Fiorucci, “PPARs and other nuclear receptors in inflammation,” Current Opinion in Pharmacology, vol. 6, no. 4, pp. 421–427, 2006. View at Publisher · View at Google Scholar
  70. T. Sher, H. F. Yi, O. W. McBride, and F. J. Gonzalez, “cDNA cloning, chromosomal mapping, and functional characterization of the human peroxisome proliferator activated receptor,” Biochemistry, vol. 32, no. 21, pp. 5598–5604, 1993. View at Publisher · View at Google Scholar
  71. N. Sambandam, D. Morabito, C. Wagg, B. N. Finck, D. P. Kelly, and G. D. Lopaschuk, “Chronic activation of PPARα is detrimental to cardiac recovery after ischemia,” American Journal of Physiology, vol. 290, no. 1, pp. H87–H95, 2006. View at Publisher · View at Google Scholar
  72. T. H. Thatcher, P. J. Sime, and R. K. Barth, “Sensitivity to bleomycin-induced lung injury is not moderated by an antigen-limited T-cell repertoire,” Experimental Lung Research, vol. 31, no. 7, pp. 685–700, 2005. View at Publisher · View at Google Scholar
  73. H. F. Lakatos, T. H. Thatcher, R. M. Kottmann, T. M. Garcia, R. P. Phipps, and P. J. Sime, “The role of PPARs in lung fibrosis,” PPAR Research, vol. 2007, Article ID 71323, 10 pages, 2007. View at Publisher · View at Google Scholar
  74. J. Auwerx, K. Schoonjans, J.-C. Fruchart, and B. Staels, “Regulation of triglyceride metabolism by PPARs: fibrates and thiazolidinediones have distinct effects,” Journal of atherosclerosis and thrombosis, vol. 3, no. 2, pp. 81–89, 1996. View at Google Scholar
  75. J. D. Brown and J. Plutzky, “Peroxisome proliferator-activated receptors as transcriptional nodal points and therapeutic targets,” Circulation, vol. 115, no. 4, pp. 518–533, 2007. View at Publisher · View at Google Scholar
  76. Y.-X. Wang, C.-H. Lee, S. Tiep et al., “Peroxisome-proliferator-activated receptor d activates fat metabolism to prevent obesity,” Cell, vol. 113, no. 2, pp. 159–170, 2003. View at Publisher · View at Google Scholar
  77. G. D. Barish, V. A. Narkar, and R. M. Evans, “PPARδ: a dagger in the heart of the metabolic syndrome,” Journal of Clinical Investigation, vol. 116, no. 3, pp. 590–597, 2006. View at Publisher · View at Google Scholar
  78. C.-H. Lee, A. Chawla, N. Urbiztondo, D. Liao, W. A. Boisvert, and R. M. Evans, “Transcriptional repression of atherogenic inflammation: modulation by PPARδ,” Science, vol. 302, no. 5644, pp. 453–457, 2003. View at Publisher · View at Google Scholar
  79. H. Lim and S. K. Dey, “Minireview: a novel pathway of prostacyclin signaling—hanging out with nuclear receptors,” Endocrinology, vol. 143, no. 9, pp. 3207–3210, 2002. View at Publisher · View at Google Scholar
  80. B. M. Forman, J. Chen, and R. M. Evans, “Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors α and δ,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 9, pp. 4312–4317, 1997. View at Publisher · View at Google Scholar
  81. G. Anfossi, P. Massucco, E. Mularoni, F. Cavalot, L. Mattiello, and M. Trovati, “Organic nitrates and compounds that increase intraplatelet cyclic guanosine monophosphate (cGMP) levels enhance the antiaggregating effects of the stable prostacyclin analogue iloprost,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 49, no. 5, pp. 839–845, 1993. View at Publisher · View at Google Scholar
  82. R. J. Gryglewski, “Interactions between nitric oxide and prostacyclin,” Seminars in Thrombosis and Hemostasis, vol. 19, no. 2, pp. 158–166, 1993. View at Publisher · View at Google Scholar
  83. P. S. Macdonald, M. A. Read, and G. J. Dusting, “Synergistic inhibition of platelet aggregation by endothelium-derived relaxing factor and prostacyclin,” Thrombosis Research, vol. 49, no. 5, pp. 437–449, 1988. View at Publisher · View at Google Scholar
  84. M. W. Radomski, R. M. Palmer, and S. Moncada, “The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide,” British Journal of Pharmacology, vol. 92, no. 3, pp. 639–646, 1987. View at Google Scholar
  85. M. Spiecker, H. Darius, and J. Meyer, “Synergistic platelet antiaggregatory effects of the adenylate cyclase activator iloprost and the guanylate cyclase activating agent SIN-1 in vivo,” Thrombosis Research, vol. 70, no. 5, pp. 405–415, 1993. View at Publisher · View at Google Scholar
  86. P. S. Lidbury, E. Antunes, G. de Nucci, and J. R. Vane, “Interactions of iloprost and sodium nitroprusside on vascular smooth muscle and platelet aggregation,” British Journal of Pharmacology, vol. 98, no. 4, pp. 1275–1280, 1989. View at Google Scholar
  87. R. Katzenschlager, K. Weiss, W. Rogatti, B. A. Peskar, and H. Sinzinger, “Synergism between PGE1-metabolites (13,14-dihydro-prostaglandin E1, 15-keto prostaglandin E1, 15-keto-13,14-Dihydro-prostaglandin E1) and nitric oxide (NO) on platelet aggregation,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 45, no. 3, pp. 207–210, 1992. View at Publisher · View at Google Scholar
  88. R. Katzenschlager, K. Weiss, W. Rogatti, M. Stelzeneder, and H. Sinzinger, “Interaction between prostaglandin E1 and nitric oxide (NO),” Thrombosis Research, vol. 62, no. 4, pp. 299–304, 1991. View at Publisher · View at Google Scholar
  89. F. Y. Ali, K. Egan, G. A. FitzGerald et al., “Role of prostacyclin versus peroxisome proliferator-activated receptor ß receptors in prostacyclin sensing by lung fibroblasts,” American Journal of Respiratory Cell and Molecular Biology, vol. 34, no. 2, pp. 242–246, 2006. View at Publisher · View at Google Scholar
  90. T. M. Willson, P. J. Brown, D. D. Sternbach, and B. R. Henke, “The PPARs: from orphan receptors to drug discovery,” Journal of Medicinal Chemistry, vol. 43, no. 4, pp. 527–550, 2000. View at Publisher · View at Google Scholar
  91. J. Padilla, E. Leung, and R. P. Phipps, “Human B lymphocytes and B lymphomas express PPAR-γ and are killed by PPAR-γ agonists,” Clinical Immunology, vol. 103, no. 1, pp. 22–33, 2002. View at Publisher · View at Google Scholar
  92. D. Kelly, J. I. Campbell, T. P. King et al., “Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shutting of PPAR-? and ReIA,” Nature Immunology, vol. 5, no. 1, pp. 104–112, 2004. View at Publisher · View at Google Scholar
  93. Y. Zhu, C. Qi, J. R. Korenberg et al., “Structural organization of mouse peroxisome proliferator-activated receptor ? (mPPAR?) gene: alternative promoter use and different splicing yield two mPPAR? isoforms,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 17, pp. 7921–7925, 1995. View at Publisher · View at Google Scholar
  94. L. Fajas, D. Auboeuf, E. Raspé et al., “The organization, promoter analysis, and expression of the human PPAR? gene,” Journal of Biological Chemistry, vol. 272, no. 30, pp. 18779–18789, 1997. View at Publisher · View at Google Scholar
  95. M. Ricote, J. Huang, L. Fajas et al., “Expression of the peroxisome proliferator-activated receptor ? (PPAR?) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 13, pp. 7614–7619, 1998. View at Publisher · View at Google Scholar
  96. K. Iijima, M. Yoshizumi, J. Ako et al., “Expression of peroxisome proliferator-activated receptor ? (PPAR?) in rat aortic smooth muscle cells,” Biochemical and Biophysical Research Communications, vol. 247, no. 2, pp. 353–356, 1998. View at Publisher · View at Google Scholar
  97. A. Nencioni, F. Grünebach, A. Zobywlaski, C. Denzlinger, W. Brugger, and P. Brossart, “Dendritic cell immunogenicity is regulated by peroxisome proliferator-activated receptor γ,” Journal of Immunology, vol. 169, no. 3, pp. 1228–1235, 2002. View at Google Scholar
  98. M. Ricote, A. C. Li, T. M. Willson, C. J. Kelly, and C. K. Glass, “The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation,” Nature, vol. 391, no. 6662, pp. 79–82, 1998. View at Publisher · View at Google Scholar
  99. L. Michalik, B. Desvergne, and W. Wahli, “Peroxisome-proliferator-activated receptors and cancers: complex stories,” Nature Reviews Cancer, vol. 4, no. 1, pp. 61–70, 2004. View at Publisher · View at Google Scholar
  100. S. G. Harris, J. Padilla, L. Koumas, D. M. Ray, and R. P. Phipps, “Prostaglandins as modulators of immunity,” Trends in Immunology, vol. 23, no. 3, pp. 144–150, 2002. View at Publisher · View at Google Scholar
  101. A. von Knethen, M. Soller, N. Tzieply et al., “PPAR?1 attenuates cytosol to membrane translocation of PKCa to desensitize monocytes/macrophages,” Journal of Cell Biology, vol. 176, no. 5, pp. 681–694, 2007. View at Publisher · View at Google Scholar
  102. S. W. Chung, B. Y. Kang, S. H. Kim et al., “Oxidized low density lipoprotein inhibits interleukin-12 production in lipopolysaccharide-activated mouse macrophages via direct interactions between peroxisome proliferator-activated receptor-? and nuclear factor-?B,” Journal of Biological Chemistry, vol. 275, no. 42, pp. 32681–32687, 2000. View at Publisher · View at Google Scholar
  103. F. Chen, V. Castranova, X. Shi, and L. M. Demers, “New insights into the role of nuclear factor-κB, a ubiquitous transcription factor in the initiation of diseases,” Clinical Chemistry, vol. 45, no. 1, pp. 7–17, 1999. View at Google Scholar
  104. L. A. Moraes, K. E. Swales, J. A. Wray et al., “Nongenomic signaling of the retinoid X receptor through binding and inhibiting Gq in human platelets,” Blood, vol. 109, no. 9, pp. 3741–3744, 2007. View at Publisher · View at Google Scholar
  105. D. M. Ray, S. L. Spinelli, S. J. Pollock et al., “Peroxisome proliferator-activated receptor ? and the retinoid X receptor transcription factors are released from activated human platelets and are shed in microparticles,” Thrombosis and Haemostasis, vol. 101, 2008. View at Publisher · View at Google Scholar
  106. V. Pasceri, H. D. Wu, J. T. Willerson, and E. T. H. Yeh, “Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-γ activators,” Circulation, vol. 101, no. 3, pp. 235–238, 2000. View at Google Scholar
  107. K. Goya, S. Sumitani, M. Otsuki et al., “The thiazolidinedione drug troglitazone up-regulates nitric oxide synthase expression in vascular endothelial cells,” Journal of Diabetes and its Complications, vol. 20, no. 5, pp. 336–342, 2006. View at Publisher · View at Google Scholar
  108. G. Anfossi and M. Trovati, “Pathophysiology of platelet resistance to anti-aggregating agents in insulin resistance and type 2 diabetes: implications for anti-aggregating therapy,” Cardiovascular and Hematological Agents in Medicinal Chemistry, vol. 4, no. 2, pp. 111–128, 2006. View at Publisher · View at Google Scholar
  109. I. Juhan-Vague, P. E. Morange, and M.-C. Alessi, “The insulin resistance syndrome: implications for thrombosis and cardiovascular disease,” Pathophysiology of Haemostasis and Thrombosis, vol. 32, no. 5-6, pp. 269–273, 2002. View at Publisher · View at Google Scholar
  110. D. J. Schneider, “Abnormalities of coagulation, platelet function, and fibrinolysis associated with syndromes of insulin resistance,” Coronary Artery Disease, vol. 16, no. 8, pp. 473–476, 2005. View at Publisher · View at Google Scholar
  111. M. Trovati and G. Anfossi, “Mechanisms involved in platelet hyperactivation and platelet-endothelium interrelationships in diabetes mellitus,” Current Diabetes Reports, vol. 2, no. 4, pp. 316–322, 2002. View at Publisher · View at Google Scholar
  112. M. Trovati and G. Anfossi, “Influence of insulin and of insulin resistance on platelet and vascular smooth muscle cell function,” Journal of Diabetes and Its Complications, vol. 16, no. 1, pp. 35–40, 2002. View at Publisher · View at Google Scholar
  113. W. R. Oliver Jr., J. L. Shenk, M. R. Snaith et al., “A selective peroxisome proliferator-activated receptor d agonist promotes reverse cholesterol transport,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 9, pp. 5306–5311, 2001. View at Publisher · View at Google Scholar
  114. P. Libby, P. M. Ridker, and A. Maseri, “Inflammation and atherosclerosis,” Circulation, vol. 105, no. 9, pp. 1135–1143, 2002. View at Publisher · View at Google Scholar
  115. S. Lindemann, B. Krämer, P. Seizer, and M. Gawaz, “Platelets, inflammation and atherosclerosis,” Journal of Thrombosis and Haemostasis, vol. 5, 1, pp. 203–211, 2007. View at Publisher · View at Google Scholar
  116. Z. M. Dong, S. M. Chapman, A. A. Brown, P. S. Frenette, R. O. Hynes, and D. D. Wagner, “The combined role of P- and E-selectins in atherosclerosis,” Journal of Clinical Investigation, vol. 102, no. 1, pp. 145–152, 1998. View at Publisher · View at Google Scholar
  117. Y. Huo, A. Schober, S. B. Forlow et al., “Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E,” Nature Medicine, vol. 9, no. 1, pp. 61–67, 2002. View at Publisher · View at Google Scholar
  118. K. Daub, H. Langer, P. Seizer et al., “Platelets induce differentiation of human CD34+ progenitor cells into foam cells and endothelial cells,” The FASEB Journal, vol. 20, no. 14, pp. 2559–2561, 2006. View at Publisher · View at Google Scholar
  119. S. Massberg, K. Brand, S. Grüner et al., “A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation,” Journal of Experimental Medicine, vol. 196, no. 7, pp. 887–896, 2002. View at Publisher · View at Google Scholar
  120. S. Massberg, K. Schürzinger, M. Lorenz et al., “Platelet adhesion via glycoprotein IIb integrin is critical for atheroprogression and focal cerebral ischemia: an in vivo study in mice lacking glycoprotein IIb,” Circulation, vol. 112, no. 8, pp. 1180–1188, 2005. View at Publisher · View at Google Scholar
  121. T. Bombeli, B. R. Schwartz, and J. M. Harlan, “Adhesion of activated platelets to endothelial cells: evidence for a GPIIbIIIa-dependent bridging mechanism and novel roles for endothelial intercellular adhesion molecule 1 (ICAM-1), αvβ3 integrin, and GPIbα,” Journal of Experimental Medicine, vol. 187, no. 3, pp. 329–339, 1998. View at Publisher · View at Google Scholar
  122. M. Gawaz, F.-J. Neumann, T. Dickfeld et al., “Vitronectin receptor (avß3) mediates platelet adhesion to the luminal aspect of endothelial cells: implications for reperfusion in acute myocardial infarction,” Circulation, vol. 96, no. 6, pp. 1809–1818, 1997. View at Google Scholar
  123. M. Gawaz, F.-J. Neumann, I. Ott, A. Schiessler, and A. Schömig, “Platelet function in acute myocardial infarction treated with direct angioplasty,” Circulation, vol. 93, no. 2, pp. 229–237, 1996. View at Google Scholar
  124. H. Langer, A. E. May, K. Daub et al., “Adherent platelets recruit and induce differentiation of murine embryonic endothelial progenitor cells to mature endothelial cells in vitro,” Circulation Research, vol. 98, no. 2, pp. e2–e10, 2006. View at Publisher · View at Google Scholar
  125. D. M. Jans, W. Martinet, M. Fillet et al., “Effect of non-steroidal anti-inflammatory drugs on amyloid-ß formation and macrophage activation after platelet phagocytosis,” Journal of Cardiovascular Pharmacology, vol. 43, no. 3, pp. 462–470, 2004. View at Publisher · View at Google Scholar
  126. G. R. Y. De Meyer, D. M. M. De Cleen, S. Cooper et al., “Platelet phagocytosis and processing of ß-amyloid precursor protein as a mechanism of macrophage activation in atherosclerosis,” Circulation Research, vol. 90, no. 11, pp. 1197–1204, 2002. View at Publisher · View at Google Scholar
  127. T. Nassar, B. S. Sachais, S. Akkawi et al., “Platelet factor 4 enhances the binding of oxidized low-density lipoprotein to vascular wall cells,” Journal of Biological Chemistry, vol. 278, no. 8, pp. 6187–6193, 2003. View at Publisher · View at Google Scholar
  128. M. Gawaz, K. Brand, T. Dickfeld et al., “Platelets induce alterations of chemotactic and adhesive properties of endothelial cells mediated through an interleukin-1-dependent mechanism. Implications for atherogenesis,” Atherosclerosis, vol. 148, no. 1, pp. 75–85, 2000. View at Publisher · View at Google Scholar
  129. P. von Hundelshausen, K. S. Weber, Y. Huo et al., “RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium,” Circulation, vol. 103, no. 13, pp. 1772–1777, 2001. View at Google Scholar
  130. C. Fernandez-Patron, M. A. Martinez-Cuesta, E. Salas et al., “Differential regulation of platelet aggregation by matrix metalloproteinases-9 and -2,” Thrombosis and Haemostasis, vol. 82, no. 6, pp. 1730–1735, 1999. View at Google Scholar
  131. G. Sawicki, E. Salas, J. Murat, H. Miszta-Lane, and M. W. Radomski, “Release of gelatinase A during platelet activation mediates aggregation,” Nature, vol. 386, no. 6625, pp. 616–619, 1997. View at Publisher · View at Google Scholar
  132. A. E. May, T. Kälsch, S. Massberg, Y. Herouy, R. Schmidt, and M. Gawaz, “Engagement of glycoprotein IIb/IIIa (αIIbβ3) on platelets upregulates CD40L and triggers CD40L-dependent matrix degradation by endothelial cells,” Circulation, vol. 106, no. 16, pp. 2111–2117, 2002. View at Publisher · View at Google Scholar
  133. S. Bellosta, D. Via, M. Canavesi et al., “HMG-CoA reductase inhibitors reduce MMP-9 secretion by macrophages,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 18, no. 11, pp. 1671–1678, 1998. View at Google Scholar
  134. S. W. Galt, S. Lindemann, D. Medd et al., “Differential regulation of matrix metalloproteinase-9 by monocytes adherent to collagen and platelets,” Circulation Research, vol. 89, no. 6, pp. 509–516, 2001. View at Publisher · View at Google Scholar
  135. N. A. Turner, D. J. O'Regan, S. G. Ball, and K. E. Porter, “Simvastatin inhibits MMP-9 secretion from human saphenous vein smooth muscle cells by inhibiting the RhoA/ROCK pathway and reducing MMP-9 mRNA levels,” The FASEB Journal, vol. 19, no. 7, pp. 804–806, 2005. View at Publisher · View at Google Scholar
  136. B. Wong, W. C. Lumma, A. M. Smith, J. T. Sisko, S. D. Wright, and T.-Q. Cai, “Statins suppress THP-1 cell migration and secretion of matrix metalloproteinase 9 by inhibiting geranylgeranylation,” Journal of Leukocyte Biology, vol. 69, no. 6, pp. 959–962, 2001. View at Google Scholar
  137. S. Toomey, B. Harhen, H. M. Roche, D. Fitzgerald, and O. Belton, “Profound resolution of early atherosclerosis with conjugated linoleic acid,” Atherosclerosis, vol. 187, no. 1, pp. 40–49, 2006. View at Publisher · View at Google Scholar
  138. A. C. Li, C. J. Binder, A. Gutierrez et al., “Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARa, ß/d, and ?,” Journal of Clinical Investigation, vol. 114, no. 11, pp. 1564–1576, 2004. View at Publisher · View at Google Scholar
  139. Z. Chen, S. Ishibashi, S. Perrey et al., “Troglitazone inhibits atherosclerosis in apolipoprotein E-knockout mice: pleiotropic effects on CD36 expression and HDL,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 3, pp. 372–377, 2001. View at Google Scholar
  140. A. C. Li, K. K. Brown, M. J. Silvestre, T. M. Willson, W. Palinski, and C. K. Glass, “Peroxisome proliferator-activated receptor γ ligands inhibit development of atherosclerosis in LDL receptor-deficient mice,” Journal of Clinical Investigation, vol. 106, no. 4, pp. 523–531, 2000. View at Publisher · View at Google Scholar
  141. S. Cuzzocrea, B. Pisano, L. Dugo et al., “Rosiglitazone, a ligand of the peroxisome proliferator-activated receptor-?, reduces acute pancreatitis induced by cerulein,” Intensive Care Medicine, vol. 30, no. 5, pp. 951–956, 2004. View at Publisher · View at Google Scholar
  142. H. Shu, B. Wong, G. Zhou et al., “Activation of PPARa or ? reduces secretion of matrix metalloproteinase 9 but not interleukin 8 from human monocytic THP-1 cells,” Biochemical and Biophysical Research Communications, vol. 267, no. 1, pp. 345–349, 2000. View at Publisher · View at Google Scholar
  143. J. S. Sidhu, D. Cowan, J. A. Tooze, and J.-C. Kaski, “Peroxisome proliferator-activated receptor-γ agonist rosiglitazone reduces circulating platelet activity in patients without diabetes mellitus who have coronary artery disease,” American Heart Journal, vol. 147, no. 6, pp. 1032–1037, 2004. View at Publisher · View at Google Scholar
  144. F. F. Samaha, P. O. Szapary, N. Iqbal et al., “Effects of rosiglitazone on lipids, adipokines, and inflammatory markers in nondiabetic patients with low high-density lipoprotein cholesterol and metabolic syndrome,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 3, pp. 624–630, 2006. View at Publisher · View at Google Scholar
  145. M. D. Leibowitz, C. Fiévet, N. Hennuyer et al., “Activation of PPARd alters lipid metabolism in db/db mice,” FEBS Letters, vol. 473, no. 3, pp. 333–336, 2000. View at Publisher · View at Google Scholar
  146. J. N. van der Veen, J. K. Kruit, R. Havinga et al., “Reduced cholesterol absorption upon PPARd activation coincides with decreased intestinal expression of NPC1L1,” Journal of Lipid Research, vol. 46, no. 3, pp. 526–534, 2005. View at Publisher · View at Google Scholar
  147. A. Gallino, A. Haeberli, H. R. Baur, and P. W. Straub, “Fibrin formation and platelet aggregation in patients with severe coronary artery disease: relationship with the degree of myocardial ischemia,” Circulation, vol. 72, no. 1, pp. 27–30, 1985. View at Google Scholar
  148. B. Ashby, J. L. Daniel, and J. B. Smith, “Mechanisms of platelet activation and inhibition,” Hematology/Oncology Clinics of North America, vol. 4, no. 1, pp. 1–26, 1990. View at Google Scholar
  149. T. Ishizuka, S. Itaya, H. Wada et al., “Differential effect of the antidiabetic thiazolidinediones troglitazone and pioglitazone on human platelet aggregation mechanism,” Diabetes, vol. 47, no. 9, pp. 1494–1500, 1998. View at Publisher · View at Google Scholar
  150. M. Lorenz, S. Wessler, E. Follmann et al., “A constituent of green tea, epigallocatechin-3-gallate, activates endothelial nitric oxide synthase by a phosphatidylinositol-3-OH-kinase-, cAMP-dependent protein kinase-, and Akt-dependent pathway and leads to endothelial-dependent vasorelaxation,” Journal of Biological Chemistry, vol. 279, no. 7, pp. 6190–6195, 2004. View at Publisher · View at Google Scholar
  151. D. Li, K. Chen, N. Sinha et al., “The effects of PPAR-? ligand pioglitazone on platelet aggregation and arterial thrombus formation,” Cardiovascular Research, vol. 65, no. 4, pp. 907–912, 2005. View at Publisher · View at Google Scholar
  152. H. Kanehara, G. Tohda, K. Oida, J. Suzuki, H. Ishii, and I. Miyamori, “Thrombomodulin expression by THP-1 but not by vascular endothelial cells is upregulated by pioglitazone,” Thrombosis Research, vol. 108, no. 4, pp. 227–234, 2002. View at Publisher · View at Google Scholar
  153. D. S. Calnek, L. Mazzella, S. Roser, J. Roman, and C. M. Hart, “Peroxisome proliferator-activated receptor γ ligands increase release of nitric oxide from endothelial cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 1, pp. 52–57, 2003. View at Publisher · View at Google Scholar
  154. D.-H. Cho, Y. J. Choi, S. A. Jo, and I. Jo, “Nitric oxide production and regulation of endothelial nitric-oxide synthase phosphorylation by prolonged treatment with troglitazone: evidence for involvement of peroxisome proliferator-activated receptor (PPAR) γ-dependent and PPARγ-independent signaling pathways,” Journal of Biological Chemistry, vol. 279, no. 4, pp. 2499–2506, 2004. View at Publisher · View at Google Scholar
  155. H. Takano, T. Nagai, M. Asakawa et al., “Peroxisome proliferator-activated receptor activators inhibit lipopolysaccharide-induced tumor necrosis factor-a expression in neonatal rat cardiac myocytes,” Circulation Research, vol. 87, no. 7, pp. 596–602, 2000. View at Google Scholar
  156. T.-L. Yue, J. Chen, W. Bao et al., “In vivo myocardial protection from ischemia/reperfusion injury by the peroxisome proliferator-activated receptor-? agonist rosiglitazone,” Circulation, vol. 104, no. 21, pp. 2588–2594, 2001. View at Publisher · View at Google Scholar
  157. J. E. Jordan, Z.-Q. Zhao, and J. Vinten-Johansen, “The role of neutrophils in myocardial ischemia-reperfusion injury,” Cardiovascular Research, vol. 43, no. 4, pp. 860–878, 1999. View at Publisher · View at Google Scholar
  158. M. Ricote, J. T. Huang, J. S. Welch, and C. K. Glass, “The peroxisome proliferator-activated receptorγ (PPARγ) as a regulator of monocyte/macrophage function,” Journal of Leukocyte Biology, vol. 66, no. 5, pp. 733–739, 1999. View at Google Scholar
  159. S. S. Huang, M. C. Tsai, C. L. Chih, L. M. Hung, and S. K. Tsai, “Resveratrol reduction of infarct size in Long-Evans rats subjected to focal cerebral ischemia,” Life Sciences, vol. 69, no. 9, pp. 1057–1065, 2001. View at Publisher · View at Google Scholar
  160. D. L. Feinstein, “Therapeutic potential of peroxisome proliferator-activated receptor agonists for neurological disease,” Diabetes Technology & Therapeutics, vol. 5, no. 1, pp. 67–73, 2003. View at Publisher · View at Google Scholar
  161. R. Bordet, T. Ouk, O. Petrault et al., “PPAR: a new pharmacological target for neuroprotection in stroke and neurodegenerative diseases,” Biochemical Society Transactions, vol. 34, part 6, pp. 1341–1346, 2006. View at Publisher · View at Google Scholar
  162. S. Rios, “Relationship between obesity and the increased risk of major complications in non-insulin-dependent diabetes mellitus,” European Journal of Clinical Investigation, vol. 28, 2, pp. 14–18, 1998. View at Publisher · View at Google Scholar
  163. R. J. Gryglewski, R. M. Botting, and J. R. Vane, “Mediators produced by the endothelial cell,” Hypertension, vol. 12, no. 6, pp. 530–548, 1988. View at Google Scholar
  164. G. Anfossi, E. M. Mularoni, S. Burzacca et al., “Platelet resistance to nitrates in obesity and obese NIDDM, and normal platelet sensitivity to both insulin and nitrates in lean NIDDM,” Diabetes Care, vol. 21, no. 1, pp. 121–126, 1998. View at Publisher · View at Google Scholar
  165. G. Anfossi, I. Russo, P. Massucco et al., “Impaired synthesis and action of antiaggregating cyclic nucleotides in platelets from obese subjects: possible role in platelet hyperactivation in obesity,” European Journal of Clinical Investigation, vol. 34, no. 7, pp. 482–489, 2004. View at Publisher · View at Google Scholar
  166. T. Akai, K. Naka, K. Okuda, T. Takemura, and S. Fujii, “Decreased sensitivity of platelets to prostacyclin in patients with diabetes mellitus,” Hormone and Metabolic Research, vol. 15, no. 11, pp. 523–526, 1983. View at Publisher · View at Google Scholar
  167. C. Falcon, G. Pfliegler, H. Deckmyn, and J. Vermylen, “The platelet insulin receptor: detection, partial characterizaztion, and search for a function,” Biochemical and Biophysical Research Communications, vol. 157, no. 3, pp. 1190–1196, 1988. View at Publisher · View at Google Scholar
  168. M. Trovati, G. Anfossi, F. Cavalot, P. Massucco, E. Mularoni, and G. Emanuelli, “Insulin directly reduces platelet sensitivity to aggregating agents. Studies in vitro and in vivo,” Diabetes, vol. 37, no. 6, pp. 780–786, 1988. View at Publisher · View at Google Scholar
  169. M. Udvardy, G. Pfliegler, and K. Rak, “Platelet insulin receptor determination in non-insulin dependent diabetes mellitus,” Cellular and Molecular Life Sciences, vol. 41, no. 3, pp. 422–423, 1985. View at Publisher · View at Google Scholar
  170. N. N. Kahn, H. S. Mueller, and A. K. Sinha, “Restoration by insulin of impaired prostaglandin E1/I2 receptor activity of platelets in acute ischemic heart disease,” Circulation Research, vol. 68, no. 1, pp. 245–254, 1991. View at Google Scholar
  171. B. Lipinski, “Pathophysiology of oxidative stress in diabetes mellitus,” Journal of Diabetes and its Complications, vol. 15, no. 4, pp. 203–210, 2001. View at Publisher · View at Google Scholar
  172. J. V. Hunt, C. C. Smith, and S. P. Wolff, “Autoxidative glycosylation and possible involvement of peroxides and free radicals in LDL modification by glucose,” Diabetes, vol. 39, no. 11, pp. 1420–1424, 1990. View at Publisher · View at Google Scholar
  173. W. E. Lands and R. J. Kulmacz, “The regulation of the biosynthesis of prostaglandins and leukotrienes,” Progress in Lipid Research, vol. 25, no. 1–4, pp. 105–109, 1986. View at Publisher · View at Google Scholar
  174. M. Lagarde, “Metabolism of fatty acids by platelets and the functions of various metabolites in mediating platelet function,” Progress in Lipid Research, vol. 27, no. 2, pp. 135–152, 1988. View at Publisher · View at Google Scholar
  175. E. Véricel, C. Januel, M. Carreras, P. Moulin, and M. Lagarde, “Diabetic patients without vascular complications display enhanced basal platelet activation and decreased antioxidant status,” Diabetes, vol. 53, no. 4, pp. 1046–1051, 2004. View at Google Scholar
  176. C. Calzada, E. Véricel, B. Mitel, L. Coulon, and M. Lagarde, “12(S)-hydroperoxy-eicosatetraenoic acid increases arachidonic acid availability in collagen-primed platelets,” Journal of Lipid Research, vol. 42, no. 9, pp. 1467–1473, 2001. View at Google Scholar
  177. D. Tschoepe, U. Rauch, and B. Schwippert, “Platelet-leukocyte-cross-talk in diabetes mellitus,” Hormone and Metabolic Research, vol. 29, no. 12, pp. 631–635, 1997. View at Publisher · View at Google Scholar
  178. H. Lee, R. C. Paton, P. Passa, and J. P. Caen, “Fibrinogen binding and ADP-induced aggregation in platelets from diabetic subjects,” Thrombosis Research, vol. 24, no. 1-2, pp. 143–150, 1981. View at Publisher · View at Google Scholar
  179. P. V. Halushka, R. C. Rogers, C. B. Loadholt, and J. A. Colwell, “Increased platelet thromboxane synthesis in diabetes mellitus,” Journal of Laboratory and Clinical Medicine, vol. 97, no. 1, pp. 87–96, 1981. View at Google Scholar
  180. R. K. Mayfield, P. V. Halushka, H. J. Wohltmann et al., “Platelet function during continuous insulin infusion treatment in insulin-dependent diabetic patients,” Diabetes, vol. 34, no. 11, pp. 1127–1133, 1985. View at Publisher · View at Google Scholar
  181. N. Marx, A. Imhof, J. Froehlich et al., “Effect of rosiglitazone treatment on soluble CD40L in patients with type 2 diabetes and coronary artery disease,” Circulation, vol. 107, no. 15, pp. 1954–1957, 2003. View at Publisher · View at Google Scholar
  182. R. Stienstra, C. Duval, M. Müller, and S. Kersten, “PPARs, obesity, and inflammation,” PPAR Research, vol. 2007, Article ID 95974, 10 pages, 2007. View at Publisher · View at Google Scholar
  183. P. Trayhurn and I. S. Wood, “Signalling role of adipose tissue: adipokines and inflammation in obesity,” Biochemical Society Transactions, vol. 33, part 5, pp. 1078–1081, 2005. View at Publisher · View at Google Scholar
  184. Y.-H. Yu and H. N. Ginsberg, “Adipocyte signaling and lipid homeostasis: sequelae of insulin-resistant adipose tissue,” Circulation Research, vol. 96, no. 10, pp. 1042–1052, 2005. View at Publisher · View at Google Scholar
  185. R. Jones, “Nonsteroidal anti-inflammatory drug prescribing: past, present, and future,” The American Journal of Medicine, vol. 110, no. 1, supplement 1, pp. S4–S7, 2001. View at Publisher · View at Google Scholar
  186. G. J. Hankey and J. W. Eikelboom, “Aspirin resistance,” British Medical Journal, vol. 328, no. 7438, pp. 477–479, 2004. View at Publisher · View at Google Scholar
  187. J. A. Cambria-Kiely and P. J. Gandhi, “Aspirin resistance and genetic polymorphisms,” Journal of Thrombosis and Thrombolysis, vol. 14, no. 1, pp. 51–58, 2002. View at Publisher · View at Google Scholar
  188. A. Szczeklik, J. Musiał, A. Undas, and M. Sanak, “Aspirin resistance,” Journal of Thrombosis and Haemostasis, vol. 3, no. 8, pp. 1655–1662, 2005. View at Publisher · View at Google Scholar
  189. D. M. Becker, J. Segal, D. Vaidya et al., “Sex differences in platelet reactivity and response to low-dose aspirin therapy,” Journal of the American Medical Association, vol. 295, no. 12, pp. 1420–1427, 2006. View at Publisher · View at Google Scholar
  190. D. L. Bhatt, K. A. A. Fox, W. Hacke et al., “Clopidogrel and aspirin versus aspirin alone for the prevention of atherothrombotic events,” The New England Journal of Medicine, vol. 354, no. 16, pp. 1706–1717, 2006. View at Publisher · View at Google Scholar
  191. D. L. Bhatt and E. J. Topol, “Clopidogrel added to aspirin versus aspirin alone in secondary prevention and high-risk primary prevention: rationale and design of the clopidogrel for high atherothrombotic risk and ischemic stabilization, management, and avoidance (CHARISMA) trial,” American Heart Journal, vol. 148, no. 2, pp. 263–268, 2004. View at Publisher · View at Google Scholar
  192. C. L. Bennett, J. M. Connors, J. M. Carwile et al., “Thrombotic thrombocytopenic purpura associated with clopidogrel,” The New England Journal of Medicine, vol. 342, no. 24, pp. 1773–1777, 2000. View at Publisher · View at Google Scholar
  193. S. R. Steinhubl, W. A. Tan, J. M. Foody, and E. J. Topol, “Incidence and clinical course of thrombotic thrombocytopenic purpura due to ticlopidine following coronary stenting,” Journal of the American Medical Association, vol. 281, no. 9, pp. 806–810, 1999. View at Publisher · View at Google Scholar
  194. D. P. Chew and D. L. Bhatt, “Oral glycoprotein IIb/IIIa antagonists in coronary artery disease,” Current Cardiology Reports, vol. 3, no. 1, pp. 63–71, 2001. View at Publisher · View at Google Scholar
  195. D. P. Chew, D. L. Bhatt, S. Sapp, and E. J. Topol, “Increased mortality with oral platelet glycoprotein IIb/IIIa antagonists: a meta-analysis of phase III multicenter randomized trials,” Circulation, vol. 103, no. 2, pp. 201–206, 2001. View at Google Scholar
  196. E. S. Tai, D. Collins, S. J. Robins et al., “The L162V polymorphism at the peroxisome proliferator activated receptor a locus modulates the risk of cardiovascular events associated with insulin resistance and diabetes mellitus: the Veterans Affairs HDL Intervention Trial (VA-HIT),” Atherosclerosis, vol. 187, no. 1, pp. 153–160, 2006. View at Publisher · View at Google Scholar
  197. A. Keech, R. J. Simes, P. Barter et al., “Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial,” The Lancet, vol. 366, no. 9500, pp. 1849–1861, 2005. View at Publisher · View at Google Scholar
  198. B. Staels and J.-C. Fruchart, “Therapeutic roles of peroxisome proliferator-activated receptor agonists,” Diabetes, vol. 54, no. 8, pp. 2460–2470, 2005. View at Publisher · View at Google Scholar
  199. F. Blaschke, Y. Takata, E. Caglayan, R. E. Law, and W. A. Hsueh, “Obesity, peroxisome proliferator-activated receptor, and atherosclerosis in type 2 diabetes,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 1, pp. 28–40, 2006. View at Publisher · View at Google Scholar
  200. P. Biswas, L. V. Wilton, and S. A. Shakir, “Troglitazone and liver function abnormalities: lessons from a prescription event monitoring study and spontaneous reporting,” Drug Safety, vol. 24, no. 2, pp. 149–154, 2001. View at Publisher · View at Google Scholar
  201. “Troglitazone withdrawn from market,” American Journal of Health-System Pharmacy, vol. 57, no. 9, p. 834, 2000.
  202. B. K. Irons, R. S. Greene, T. A. Mazzolini, K. L. Edwards, and R. B. Sleeper, “Implications of rosiglitazone and pioglitazone on cardiovascular risk in patients with type 2 diabetes mellitus,” Pharmacotherapy, vol. 26, no. 2, pp. 168–181, 2006. View at Publisher · View at Google Scholar
  203. J. A. Dormandy, B. Charbonnel, D. J. Eckland et al., “Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial in macroVascular Events): a randomised controlled trial,” The Lancet, vol. 366, no. 9493, pp. 1279–1289, 2005. View at Publisher · View at Google Scholar
  204. S. M. Haffner, A. S. Greenberg, W. M. Weston, H. Chen, K. Williams, and M. I. Freed, “Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus,” Circulation, vol. 106, no. 6, pp. 679–684, 2002. View at Publisher · View at Google Scholar
  205. S. E. Kahn, S. M. Haffner, M. A. Heise et al., “Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy,” The New England Journal of Medicine, vol. 355, no. 23, pp. 2427–2443, 2006. View at Publisher · View at Google Scholar
  206. A. J. Scheen, “DREAM study: prevention of type 2 diabetes with ramipril and/or rosiglitazone in persons with dysglycaemia but no cardiovascular desease,” Revue Medicale de Liege, vol. 61, no. 10, pp. 728–732, 2006. View at Google Scholar
  207. P. D. Home, S. J. Pocock, H. Beck-Nielsen et al., “Rosiglitazone evaluated for cardiovascular outcomes—an interim analysis,” The New England Journal of Medicine, vol. 357, no. 1, pp. 28–38, 2007. View at Publisher · View at Google Scholar
  208. T.-A. Cock, S. M. Houten, and J. Auwerx, “Peroxisome proliferator-activated receptor-γ: too much of a good thing causes harm,” EMBO Reports, vol. 5, no. 2, pp. 142–147, 2004. View at Publisher · View at Google Scholar
  209. S. M. Rangwala and M. A. Lazar, “The dawn of the SPPARMs?” Science's STKE, vol. 2002, no. 121, p. pe9, 2002. View at Publisher · View at Google Scholar
  210. P. V. Devasthale, S. Chen, Y. Jeon et al., “Discovery of tertiary aminoacids as dual PPARa/? agonists-I,” Bioorganic & Medicinal Chemistry Letters, vol. 17, no. 8, pp. 2312–2316, 2007. View at Publisher · View at Google Scholar
  211. P. V. Devasthale, S. Chen, Y. Jeon et al., “Design and synthesis of N-[(4-methoxyphenoxy)carbonyl]-N-[[4-[2-(5-methyl- 2-phenyl-4-oxazolyl)ethoxy]phenyl]methyl]glycine [muraglitazar/BMS-298585], a novel peroxisome proliferator-activated receptor a/? dual agonist with efficacious glucose and lipid-lowering activities,” Journal of Medicinal Chemistry, vol. 48, no. 6, pp. 2248–2250, 2005. View at Publisher · View at Google Scholar
  212. T. Hatae, M. Wada, C. Yokoyama, M. Shimonishi, and T. Tanabe, “Prostacyclin-dependent apoptosis mediated by PPARδ,” Journal of Biological Chemistry, vol. 276, no. 49, pp. 46260–46267, 2001. View at Publisher · View at Google Scholar
  213. R. Hertz, I. Berman, D. Keppler, and J. Bar-Tana, “Activation of gene transcription by prostacyclin analogues is mediated by the peroxisome-proliferators-activated receptor (PPAR),” European Journal of Biochemistry, vol. 235, no. 1-2, pp. 242–247, 1996. View at Publisher · View at Google Scholar
  214. H. Lim and S. K. Dey, “PPARδ functions as a prostacyclin receptor in blastocyst implantation,” Trends in Endocrinology and Metabolism, vol. 11, no. 4, pp. 137–142, 2000. View at Publisher · View at Google Scholar