Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2008 (2008), Article ID 548919, 10 pages
http://dx.doi.org/10.1155/2008/548919
Review Article

PPAR Ligands for Cancer Chemoprevention

Department of Oncologic Pathology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan

Received 3 March 2008; Accepted 31 March 2008

Academic Editor: Dipak Panigrahy

Copyright © 2008 Yumiko Yasui et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Hess, W. Stäubli, and W. Riess, “Nature of the hepatomegalic effect produced by ethyl-chlorophenoxy- isobutyrate in the rat,” Nature, vol. 208, no. 5013, pp. 856–858, 1965. View at Publisher · View at Google Scholar
  2. J. Vamecq and N. Latruffe, “Medical significance of peroxisome proliferator-activated receptors,” The Lancet, vol. 354, no. 9173, pp. 141–148, 1999. View at Publisher · View at Google Scholar
  3. J. C. Corton, S. P. Anderson, and A. Stauber, “Central role of peroxisome proliferator-activated receptors in the actions of peroxisome proliferators,” Annual Review of Pharmacology and Toxicology, vol. 40, pp. 491–518, 2000. View at Publisher · View at Google Scholar
  4. L. Michalik and W. Wahli, “Peroxisome proliferator-activated receptors: three isotypes for a multitude of functions,” Current Opinion in Biotechnology, vol. 10, no. 6, pp. 564–570, 1999. View at Publisher · View at Google Scholar
  5. T. M. Willson, P. J. Brown, D. D. Sternbach, and B. R. Henke, “The PPARs: from orphan receptors to drug discovery,” Journal of Medicinal Chemistry, vol. 43, no. 4, pp. 527–550, 2000. View at Publisher · View at Google Scholar
  6. H. Lim, R. A. Gupta, W. G. Ma et al., “Cyclo-oxygenase-2-derived prostacyclin mediates embryo implantation in the mouse via PPARd,” Genes & Development, vol. 13, no. 12, pp. 1561–1574, 1999. View at Publisher · View at Google Scholar
  7. C. N. A. Palmer, M.-H. Hsu, K. J. Griffin, and E. F. Johnson, “Novel sequence determinants in peroxisome proliferator signaling,” Journal of Biological Chemistry, vol. 270, no. 27, pp. 16114–16121, 1995. View at Publisher · View at Google Scholar
  8. K. L. Gearing, M. Gottlicher, M. Teboul, E. Widmark, and J.-Å. Gustafsson, “Interaction of the peroxisome-proliferator-activated receptor and retinoid X receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 4, pp. 1440–1444, 1993. View at Publisher · View at Google Scholar
  9. I. Issemann and S. Green, “Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators,” Nature, vol. 347, no. 6294, pp. 645–650, 1990. View at Publisher · View at Google Scholar
  10. C. N. A. Palmer, M.-H. Hsu, K. J. Griffin, J. L. Raucy, and E. F. Johnson, “Peroxisome proliferator activated receptor-α expression in human liver,” Molecular Pharmacology, vol. 53, no. 1, pp. 14–22, 1998. View at Google Scholar
  11. O. Braissant, F. Foufelle, C. Scotto, M. Dauça, and W. Wahli, “Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat,” Endocrinology, vol. 137, no. 1, pp. 354–366, 1996. View at Publisher · View at Google Scholar
  12. D. Auboeuf, J. Rieusset, L. Fajas et al., “Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-alpha in humans: no alteration in adipose tissue of obese and NIDDM patients,” Diabetes, vol. 46, no. 8, pp. 1319–1327, 1997. View at Publisher · View at Google Scholar
  13. F. J. Gonzalez, “The role of peroxisome proliferator activated receptor alpha in peroxisome proliferation, physiological homeostasis, and chemical carcinogenesis,” Advances in Experimental Medicine and Biology, vol. 422, pp. 109–125, 1997. View at Google Scholar
  14. L. G. Kömüves, K. Hanley, A. M. Lefebvre et al., “Stimulation of PPARa promotes epidermal keratinocyte differentiation in vivo,” Journal of Investigative Dermatology, vol. 115, no. 3, pp. 353–360, 2000. View at Publisher · View at Google Scholar
  15. L. G. Komuves, K. Hanley, M.-Q. Man, P. M. Elias, M. L. Williams, and K. R. Feingold, “Keratinocyte differentiation in hyperproliferative epidermis: topical application of PPARα activators restores tissue homeostasis,” Journal of Investigative Dermatology, vol. 115, no. 3, pp. 361–367, 2000. View at Publisher · View at Google Scholar
  16. K. Hanley, L. G. Kömüves, D. C. Ng et al., “Farnesol stimulates differentiation in epidermal keratinocytes via PPARa,” Journal of Biological Chemistry, vol. 275, no. 15, pp. 11484–11491, 2000. View at Publisher · View at Google Scholar
  17. P. Thuillier, G. J. Anchiraico, K. P. Nickel et al., “Activators of peroxisome proliferator-activated receptor-a partially inhibit mouse skin tumor promotion,” Molecular Carcinogenesis, vol. 29, no. 3, pp. 134–142, 2000. View at Publisher · View at Google Scholar
  18. G. P. Collett, A. M. Betts, M. I. Johnson et al., “Peroxisome proliferator-activated receptor a is an androgen-responsive gene in human prostate and is highly expressed in prostatic adenocarcinoma,” Clinical Cancer Research, vol. 6, no. 8, pp. 3241–3248, 2000. View at Google Scholar
  19. T. Tanaka, H. Kohno, S. Yoshitani et al., “Ligands for peroxisome proliferator-activated receptors a and ? inhibit chemically induced colitis and formation of aberrant crypt foci in rats,” Cancer Research, vol. 61, no. 6, pp. 2424–2428, 2001. View at Google Scholar
  20. S. A. Saidi, C. M. Holland, D. S. Charnock-Jones, and S. K. Smith, “In vitro and in vivo effects of the PPAR-alpha agonists fenofibrate and retinoic acid in endometrial cancer,” Molecular Cancer, vol. 5, article 13, 2006. View at Publisher · View at Google Scholar
  21. K. M. Suchanek, F. J. May, J. A. Robinson et al., “Peroxisome proliferator-activated receptor a in the human breast cancer cell lines MCF-7 and MDA-MB-231,” Molecular Carcinogenesis, vol. 34, no. 4, pp. 165–171, 2002. View at Publisher · View at Google Scholar
  22. M. Grabacka, W. Placha, P. M. Plonka et al., “Inhibition of melanoma metastases by fenofibrate,” Archives of Dermatological Research, vol. 296, no. 2, pp. 54–58, 2004. View at Publisher · View at Google Scholar
  23. M. Grabacka, P. M. Plonka, K. Urbanska, and K. Reiss, “Peroxisome proliferator-activated receptor α activation decreases metastatic potential of melanoma cells in vitro via down-regulation of Akt,” Clinical Cancer Research, vol. 12, no. 10, pp. 3028–3036, 2006. View at Publisher · View at Google Scholar
  24. A. Pozzi, M. R. Ibanez, A. E. Gatica et al., “Peroxisomal proliferator-activated receptor-a-dependent inhibition of endothelial cell proliferation and tumorigenesis,” Journal of Biological Chemistry, vol. 282, no. 24, pp. 17685–17695, 2007. View at Publisher · View at Google Scholar
  25. P. Delerive, K. De Bosscher, S. Besnard et al., “Peroxisome proliferator-activated receptor a negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-?B and AP-1,” Journal of Biological Chemistry, vol. 274, no. 45, pp. 32048–32054, 1999. View at Publisher · View at Google Scholar
  26. E. A. Meade, T. M. McIntyre, G. A. Zimmerman, and S. M. Prescott, “Peroxisome proliferators enhance cyclooxygenase-2 expression in epithelial cells,” Journal of Biological Chemistry, vol. 274, no. 12, pp. 8328–8334, 1999. View at Publisher · View at Google Scholar
  27. G. J. Kelloff, “Perspectives on cancer chemoprevention research and drug development,” Advances in Cancer Research, vol. 78, pp. 199–334, 1999. View at Google Scholar
  28. S. M. Rangwala and M. A. Lazar, “Peroxisome proliferator-activated receptor γ in diabetes and metabolism,” Trends in Pharmacological Sciences, vol. 25, no. 6, pp. 331–336, 2004. View at Publisher · View at Google Scholar
  29. Y. Barak, D. Liao, W. He et al., “Effects of peroxisome proliferator-activated receptor d on placentation, adiposity, and colorectal cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 1, pp. 303–308, 2002. View at Publisher · View at Google Scholar
  30. N. Di-Poï, L. Michalik, N. S. Tan, B. Desvergne, and W. Wahli, “The anti-apoptotic role of PPARβ contributes to efficient skin wound healing,” Journal of Steroid Biochemistry and Molecular Biology, vol. 85, no. 2–5, pp. 257–265, 2003. View at Publisher · View at Google Scholar
  31. Y.-X. Wang, C.-H. Lee, S. Tiep et al., “Peroxisome-proliferator-activated receptor d activates fat metabolism to prevent obesity,” Cell, vol. 113, no. 2, pp. 159–170, 2003. View at Publisher · View at Google Scholar
  32. T.-C. He, T. A. Chan, B. Vogelstein, and K. W. Kinzler, “PPARδ is an APC-regulated target of nonsteroidal anti-inflammatory drugs,” Cell, vol. 99, no. 3, pp. 335–345, 1999. View at Publisher · View at Google Scholar
  33. F. S. Harman, C. J. Nicol, H. E. Marin, J. M. Ward, F. J. Gonzalez, and J. M. Peters, “Peroxisome proliferator-activated receptor-δ attenuates colon carcinogenesis,” Nature Medicine, vol. 10, no. 5, pp. 481–483, 2004. View at Publisher · View at Google Scholar
  34. B. H. Park, B. Vogelstein, and K. W. Kinzler, “Genetic disruption of PPARδ decreases the tumorigenicity of human colon cancer cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 5, pp. 2598–2603, 2001. View at Publisher · View at Google Scholar
  35. N. Ouyang, J. L. Williams, and B. Rigas, “NO-donating aspirin isomers downregulate peroxisome proliferator-activated receptor (PPAR)δ expression in APCmin/+ mice proportionally to their tumor inhibitory effect: implications for the role of PPARδ in carcinogenesis,” Carcinogenesis, vol. 27, no. 2, pp. 232–239, 2006. View at Publisher · View at Google Scholar
  36. W. R. Oliver Jr., J. L. Shenk, M. R. Snaith et al., “A selective peroxisome proliferator-activated receptor d agonist promotes reverse cholesterol transport,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 9, pp. 5306–5311, 2001. View at Publisher · View at Google Scholar
  37. R. A. Gupta, D. Wang, S. Katkuri, H. Wang, S. K. Dey, and R. N. DuBois, “Activation of nuclear hormone receptor peroxisome proliferator-activated receptor-δ accelerates intestinal adenoma growth,” Nature Medicine, vol. 10, no. 3, pp. 245–247, 2004. View at Publisher · View at Google Scholar
  38. D. Wang, H. Wang, Y. Guo et al., “Crosstalk between peroxisome proliferator-activated receptor d and VEGF stimulates cancer progression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 50, pp. 19069–19074, 2006. View at Publisher · View at Google Scholar
  39. R. L. Stephen, M. C. U. Gustafsson, M. Jarvis et al., “Activation of peroxisome proliferator-activated receptor d stimulates the proliferation of human breast and prostate cancer cell lines,” Cancer Research, vol. 64, no. 9, pp. 3162–3170, 2004. View at Publisher · View at Google Scholar
  40. B. Glinghammar, J. Skogsberg, A. Hamsten, and E. Ehrenborg, “PPARδ activation induces COX-2 gene expression and cell proliferation in human hepatocellular carcinoma cells,” Biochemical and Biophysical Research Communications, vol. 308, no. 2, pp. 361–368, 2003. View at Publisher · View at Google Scholar
  41. Y. Yin, R. G. Russell, L. E. Dettin et al., “Peroxisome proliferator-activated receptor d and ? agonists differentially alter tumor differentiation and progression during mammary carcinogenesis,” Cancer Research, vol. 65, no. 9, pp. 3950–3957, 2005. View at Publisher · View at Google Scholar
  42. H. Keller, A. Mahfoudi, C. Dreyer et al., “Peroxisome proliferator-activated receptors and lipid metabolism,” Annals of the New York Academy of Sciences, vol. 684, no. 1, pp. 157–173, 1993. View at Publisher · View at Google Scholar
  43. J. M. Gimble, G. M. Pighetti, M. R. Lerner et al., “Expression of peroxisome proliferator activated receptor mRNA in normal and tumorigenic rodent mammary glands,” Biochemical and Biophysical Research Communications, vol. 253, no. 3, pp. 813–817, 1998. View at Publisher · View at Google Scholar
  44. A. Mansén, H. Guardiola-Diaz, J. Rafter, C. Branting, and J.-Å. Gustafsson, “Expression of the peroxisome proliferator-activated receptor (PPAR) in the mouse colonic mucosa,” Biochemical and Biophysical Research Communications, vol. 222, no. 3, pp. 844–851, 1996. View at Publisher · View at Google Scholar
  45. S. E. McGowan, S. K. Jackson, M. M. Doro, and P. J. Olson, “Peroxisome proliferators alter lipid acquisition and elastin gene expression in neonatal rat lung fibroblasts,” American Journal of Physiology, vol. 273, no. 6, pp. L1249–L1257, 1997. View at Google Scholar
  46. C. Huin, L. Corriveau, A. Bianchi et al., “Differential expression of peroxisome proliferator-activated receptors (PPARs) in the developing human fetal digestive tract,” Journal of Histochemistry & Cytochemistry, vol. 48, no. 5, pp. 603–611, 2000. View at Google Scholar
  47. E. Elstner, C. Müller, K. Koshizuka et al., “Ligands for peroxisome proliferator-activated receptor? and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 15, pp. 8806–8811, 1998. View at Publisher · View at Google Scholar
  48. P. Tontonoz, S. Singer, B. M. Forman et al., “Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor ? and the retinoid X receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 1, pp. 237–241, 1997. View at Publisher · View at Google Scholar
  49. M. A. K. Rumi, H. Sato, S. Ishihara et al., “Peroxisome proliferator-activated receptor ? ligand-induced growth inhibition of human hepatocellular carcinoma,” British Journal of Cancer, vol. 84, no. 12, pp. 1640–1647, 2001. View at Publisher · View at Google Scholar
  50. A. P. Heaney, M. Fernando, and S. Melmed, “PPAR-γ receptor ligands: novel therapy for pituitary adenomas,” Journal of Clinical Investigation, vol. 111, no. 9, pp. 1381–1388, 2003. View at Publisher · View at Google Scholar
  51. K. Ohta, T. Endo, K. Haraguchi, J. M. Hershman, and T. Onaya, “Ligands for peroxisome proliferator-activated receptor γ inhibit growth and induce apoptosis of human papillary thyroid carcinoma cells,” Journal of Clinical Endocrinology & Metabolism, vol. 86, no. 5, pp. 2170–2177, 2001. View at Publisher · View at Google Scholar
  52. A. F. Badawi and M. Z. Badr, “Chemoprevention of breast cancer by targeting cyclooxygenase-2 and peroxisome proliferator-activated receptor-gamma (Review),” International Journal of Oncology, vol. 20, no. 6, pp. 1109–1122, 2002. View at Google Scholar
  53. P. H. Brown and S. M. Lippman, “Chemoprevention of breast cancer,” Breast Cancer Research and Treatment, vol. 62, no. 1, pp. 1–17, 2000. View at Publisher · View at Google Scholar
  54. L. Kopelovich, J. R. Fay, R. I. Glazer, and J. A. Crowell, “Peroxisome proliferator-activated receptor modulators as potential chemopreventive agents,” Molecular Cancer Therapeutics, vol. 1, no. 5, pp. 357–363, 2002. View at Google Scholar
  55. T. Kubota, K. Koshizuka, E. A. Williamson et al., “Ligand for peroxisome proliferator-activated receptor ? (troglitazone) has potent antitumor effect against human prostate cancer both in vitro and in vivo,” Cancer Research, vol. 58, no. 15, pp. 3344–3352, 1998. View at Google Scholar
  56. F. Yin, S. Wakino, Z. Liu et al., “Troglitazone inhibits growth of MCF-7 breast carcinoma cells by targeting G1 cell cycle regulators,” Biochemical and Biophysical Research Communications, vol. 286, no. 5, pp. 916–922, 2001. View at Publisher · View at Google Scholar
  57. M. Kato, T. Kusumi, S. Tsuchida, M. Tanaka, M. Sasaki, and H. Kudo, “Induction of differentiation and peroxisome proliferator-activated receptor γ expression in colon cancer cell lines by troglitazone,” Journal of Cancer Research and Clinical Oncology, vol. 130, no. 2, pp. 73–79, 2004. View at Publisher · View at Google Scholar
  58. Y. Tsubouchi, H. Sano, Y. Kawahito et al., “Inhibition of human lung cancer cell growth by the peroxisome proliferator-activated receptor-? agonists through induction of apoptosis,” Biochemical and Biophysical Research Communications, vol. 270, no. 2, pp. 400–405, 2000. View at Publisher · View at Google Scholar
  59. P. Sarraf, E. Mueller, D. Jones et al., “Differentiation and reversal of malignant changes in colon cancer through PPAR?,” Nature Medicine, vol. 4, no. 9, pp. 1046–1052, 1998. View at Publisher · View at Google Scholar
  60. N. Takahashi, T. Okumura, W. Motomura, Y. Fujimoto, I. Kawabata, and Y. Kohgo, “Activation of PPARγ inhibits cell growth and induces apoptosis in human gastric cancer cells,” FEBS Letters, vol. 455, no. 1-2, pp. 135–139, 1999. View at Publisher · View at Google Scholar
  61. Y.-F. Guan, Y.-H. Zhang, R. M. Breyer, L. Davis, and M. D. Breyer, “Expression of peroxisome proliferator-activated receptor γ (PPARγ) in human transitional bladder cancer and its role in inducing cell death,” Neoplasia, vol. 1, no. 4, pp. 330–339, 1999. View at Publisher · View at Google Scholar
  62. M. Bienz and H. Clevers, “Linking colorectal cancer to Wnt signaling,” Cell, vol. 103, no. 2, pp. 311–320, 2000. View at Publisher · View at Google Scholar
  63. D. L. Gerhold, F. Liu, G. Jiang et al., “Gene expression profile of adipocyte differentiation and its regulation by peroxisome proliferator-activated receptor-? agonists,” Endocrinology, vol. 143, no. 6, pp. 2106–2118, 2002. View at Publisher · View at Google Scholar
  64. C. Jiang, A. T. Ting, and B. Seed, “PPAR-γ agonists inhibit production of monocyte inflammatory cytokines,” Nature, vol. 391, no. 6662, pp. 82–86, 1998. View at Publisher · View at Google Scholar
  65. M. Toyoda, H. Takagi, N. Horiguchi et al., “A ligand for peroxisome proliferator activated receptor ? Inhibits cell growth and induces apoptosis in human liver cancer cells,” Gut, vol. 50, no. 4, pp. 563–567, 2002. View at Publisher · View at Google Scholar
  66. G. G. Chen, J. F. Y. Lee, S. H. Wang, U. P. F. Chan, P. C. Ip, and W. Y. Lau, “Apoptosis induced by activation of peroxisome-proliferator activated receptor-gamma is associated with Bcl-2 and Nf-κB in human colon cancer,” Life Sciences, vol. 70, no. 22, pp. 2631–2646, 2002. View at Publisher · View at Google Scholar
  67. K. Yoshida, K. Tanabe, D. Fujii, N. Oue, W. Yasui, and T. Toge, “Induction mechanism of apoptosis by troglitazone through peroxisome proliferator-activated receptor-γ in gastric carcinoma cells,” Anticancer Research, vol. 23, no. 1A, pp. 267–273, 2003. View at Google Scholar
  68. W. R. Bruce, T. M. S. Wolever, and A. Giacca, “Mechanisms linking diet and colorectal cancer: the possible role of insulin resistance,” Nutrition and Cancer, vol. 37, no. 1, pp. 19–26, 2000. View at Publisher · View at Google Scholar
  69. G. McKeown-Eyssen, “Epidemiology of colorectal cancer revisited: are serum triglycerides and/or plasma glucose associated with risk?” Cancer Epidemiology Biomarkers & Prevention, vol. 3, no. 8, pp. 687–695, 1994. View at Google Scholar
  70. M. Mutoh, N. Niho, and K. Wakabayashi, “Concomitant suppression of hyperlipidemia and intestinal polyp formation by increasing lipoprotein lipase activity in Apc-deficient mice,” Biological Chemistry, vol. 387, no. 4, pp. 381–385, 2006. View at Publisher · View at Google Scholar
  71. H. Kohno, S. Yoshitani, S. Takashima et al., “Troglitazone, a ligand for peroxisome proliferator-activated receptor ?, inhibits chemically-induced aberrant crypt foci in rats,” Japanese Journal of Cancer Research, vol. 92, no. 4, pp. 396–403, 2001. View at Google Scholar
  72. G. D. Girnun, W. M. Smith, S. Drori et al., “APC-dependent suppression of colon carcinogenesis by PPAR?,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 21, pp. 13771–13776, 2002. View at Publisher · View at Google Scholar
  73. A.-M. Lefebvre, I. Chen, P. Desreumaux et al., “Activation of the peroxisome proliferator-activated receptor ? promotes the development of colon tumors in C57BL/6J-APCmin?/+ mice,” Nature Medicine, vol. 4, no. 9, pp. 1053–1057, 1998. View at Publisher · View at Google Scholar
  74. N. Niho, M. Takahashi, T. Kitamura et al., “Concomitant suppression of hyperlipidemia and intestinal polyp formation in Apc-deficient mice by peroxisome proliferator-activated receptor ligands,” Cancer Research, vol. 63, no. 18, pp. 6090–6095, 2003. View at Google Scholar
  75. N. Niho, M. Takahashi, Y. Shoji et al., “Dose-dependent suppression of hyperlipidemia and intestinal polyp formation in Min mice by pioglitazone, a PPAR? ligand,” Cancer Science, vol. 94, no. 11, pp. 960–964, 2003. View at Publisher · View at Google Scholar
  76. E. Saez, P. Tontonoz, M. C. Nelson et al., “Activators of the nuclear receptor PPAR? enhance colon polyp formation,” Nature Medicine, vol. 4, no. 9, pp. 1058–1061, 1998. View at Publisher · View at Google Scholar
  77. J. A. Eaden, K. R. Abrams, and J. F. Mayberry, “The risk of colorectal cancer in ulcerative colitis: a meta-analysis,” Gut, vol. 48, no. 4, pp. 526–535, 2001. View at Publisher · View at Google Scholar
  78. E. Osawa, A. Nakajima, K. Wada et al., “Peroxisome proliferator-activated receptor ? ligands suppress colon carcinogenesis induced by azoxymethane in mice,” Gastroenterology, vol. 124, no. 2, pp. 361–367, 2003. View at Publisher · View at Google Scholar
  79. H. Kohno, R. Suzuki, S. Sugie, and T. Tanaka, “Suppression of colitis-related mouse colon carcinogenesis by a COX-2 inhibitor and PPAR ligands,” BMC Cancer, vol. 5, article 46, 2005. View at Publisher · View at Google Scholar
  80. T. Tanaka, H. Kohno, R. Suzuki, Y. Yamada, S. Sugie, and H. Mori, “A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate,” Cancer Science, vol. 94, no. 11, pp. 965–973, 2003. View at Publisher · View at Google Scholar
  81. M. F. McCarty, “Activation of PPARgamma may mediate a portion of the anticancer activity of conjugated linoleic acid,” Medical Hypotheses, vol. 55, no. 3, pp. 187–188, 2000. View at Publisher · View at Google Scholar
  82. F. Bozzo, C. Bocca, S. Colombatto, and A. Miglietta, “Antiproliferative effect of conjugated linoleic acid in Caco-2 cells: involvement of PPARγ and APC/β-catenin pathways,” Chemico-Biological Interactions, vol. 169, no. 2, pp. 110–121, 2007. View at Publisher · View at Google Scholar
  83. Y. Yasui, M. Hosokawa, H. Kohno, T. Tanaka, and K. Miyashita, “Troglitazone and 9cis,11trans,13trans-conjugated linolenic acid: comparison of their antiproliferative and apoptosis-inducing effects on different colon cancer cell lines,” Chemotherapy, vol. 52, no. 5, pp. 220–225, 2006. View at Publisher · View at Google Scholar
  84. Y. Yasui, M. Hosokawa, H. Kohno, T. Tanaka, and K. Miyashita, “Growth inhibition and apoptosis induction by all-trans-conjugated linolenic acids on human colon cancer cells,” Anticancer Research, vol. 26, no. 3A, pp. 1855–1860, 2006. View at Google Scholar
  85. Y. Yasui, M. Hosokawa, T. Sahara et al., “Bitter gourd seed fatty acid rich in 9c,11t,13t-conjugated linolenic acid induces apoptosis and up-regulates the GADD45, p53 and PPAR? in human colon cancer Caco-2 cells,” Prostaglandins, Leukotrienes and Essential Fatty Acids, vol. 73, no. 2, pp. 113–119, 2005. View at Publisher · View at Google Scholar
  86. H. Kohno, Y. Yasui, R. Suzuki, M. Hosokawa, K. Miyashita, and T. Tanaka, “Dietary seed oil rich in conjugated linolenic acid from bitter melon inhibits azoxymethane-induced rat colon carcinogenesis through elevation of colonic PPARγ expression and alteration of lipid composition,” International Journal of Cancer, vol. 110, no. 6, pp. 896–901, 2004. View at Publisher · View at Google Scholar
  87. H. Kohno, R. Suzuki, Y. Yasui, M. Hosokawa, K. Miyashita, and T. Tanaka, “Pomegranate seed oil rich in conjugated linolenic acid suppresses chemically induced colon carcinogenesis in rats,” Cancer Science, vol. 95, no. 6, pp. 481–486, 2004. View at Publisher · View at Google Scholar
  88. R. Suzuki, Y. Yasui, H. Kohno et al., “Catalpa seed oil rich in 9t,11t,13c-conjugated linolenic acid suppresses the development of colonic aberrant crypt foci induced by azoxymethane in rats,” Oncology Reports, vol. 16, no. 5, pp. 989–996, 2006. View at Google Scholar
  89. Y. Yasui, R. Suzuki, H. Kohno et al., “9trans,11trans conjugated linoleic acid inhibits the development of azoxymethane-induced colonic aberrant crypt foci in rats,” Nutrition and Cancer, vol. 59, no. 1, pp. 82–91, 2007. View at Google Scholar
  90. G. D. Demetri, C. D. M. Fletcher, E. Mueller et al., “Induction of solid tumor differentiation by the peroxisome proliferator-activated receptor-? ligand troglitazone in patients with liposarcoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 7, pp. 3951–3956, 1999. View at Publisher · View at Google Scholar
  91. E. Mueller, M. Smith, P. Sarraf et al., “Effects of ligand activation of peroxisome proliferator-activated receptor ? in human prostate cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 20, pp. 10990–10995, 2000. View at Publisher · View at Google Scholar
  92. J. Hisatake, T. Ikezoe, M. Carey, S. Holden, S. Tomoyasu, and H. P. Koeffler, “Down-regulation of prostate-specific antigen expression by ligands for peroxisome proliferator-activated receptor γ in human prostate cancer,” Cancer Research, vol. 60, no. 19, pp. 5494–5498, 2000. View at Google Scholar
  93. M. H. Kulke, G. D. Demetri, N. E. Sharpless et al., “A phase II study of troglitazone, an activator of the PPAR? receptor, in patients with chemotherapy-resistant metastatic colorectal cancer,” Cancer Journal, vol. 8, no. 5, pp. 395–399, 2002. View at Google Scholar
  94. G. Debrock, V. Vanhentenrijk, R. Sciot, M. Debiec-Rychter, R. Oyen, and A. Van Oosterom, “A phase II trial with rosiglitazone in liposarcoma patients,” British Journal of Cancer, vol. 89, no. 8, pp. 1409–1412, 2003. View at Publisher · View at Google Scholar
  95. H. J. Burstein, G. D. Demetri, E. Mueller, P. Sarraf, B. M. Spiegelman, and E. P. Winer, “Use of the peroxisome proliferator-activated receptor (PPAR) γ ligand troglitazone as treatment for refractory breast cancer: a phase II study,” Breast Cancer Research and Treatment, vol. 79, no. 3, pp. 391–397, 2003. View at Publisher · View at Google Scholar
  96. E. Kebebew, M. Peng, E. Reiff et al., “A phase II trial of rosiglitazone in patients with thyroglobulin-positive and radioiodine-negative differentiated thyroid cancer,” Surgery, vol. 140, no. 6, pp. 960–967, 2006. View at Publisher · View at Google Scholar
  97. T. Baetz, E. Eisenhauer, L. Siu et al., “A phase I study of oral LY293111 given daily in combination with irinotecan in patients with solid tumours,” Investigational New Drugs, vol. 25, no. 3, pp. 217–225, 2007. View at Publisher · View at Google Scholar
  98. Y. Segawa , R. Yoshimura, T. Hase et al., “Expression of peroxisome proliferator-activated receptor (PPAR) in human prostate cancer,” The Prostate, vol. 51, no. 2, pp. 108–116, 2002. View at Publisher · View at Google Scholar
  99. C. Grommes, G. E. Landreth, and M. T. Heneka, “Antineoplastic effects of peroxisome proliferator-activated receptor γ agonists,” The Lancet Oncology, vol. 5, no. 7, pp. 419–429, 2004. View at Publisher · View at Google Scholar