Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2008, Article ID 930705, 9 pages
http://dx.doi.org/10.1155/2008/930705
Review Article

Anticancer Properties of PPAR -Effects on Cellular Metabolism and Inflammation

1Department of Food Biotechnology, Faculty of Food Technology, Agricultural University of Krakow, ul. Balicka 122, 31149 Krakow, Poland
2Department of Neuroscience, Center for Neurovirology, School of Medicine, Temple University, Philadelphia, PA 19140, USA

Received 11 January 2008; Accepted 14 April 2008

Academic Editor: Dipak Panigrahy

Copyright © 2008 Maja Grabacka and Krzysztof Reiss. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Weinhouse, O. Warburg, D. Burk, and A. L. Schade, “On respiratory impairment in cancer cells,” Science, vol. 124, no. 3215, pp. 267–272, 1956. View at Publisher · View at Google Scholar
  2. O. Warburg, “On the origin of cancer cells,” Science, vol. 123, no. 3191, pp. 309–314, 1956. View at Publisher · View at Google Scholar
  3. K. Degenhardt, R. Mathew, B. Beaudoin et al., “Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis,” Cancer Cell, vol. 10, no. 1, pp. 51–64, 2006. View at Publisher · View at Google Scholar
  4. R. J. Shaw, “Glucose metabolism and cancer,” Current Opinion in Cell Biology, vol. 18, no. 6, pp. 598–608, 2006. View at Publisher · View at Google Scholar
  5. W. Ahmed, O. Ziouzenkova, J. Brown et al., “PPARs and their metabolic modulation: new mechanisms for transcriptional regulation?” Journal of Internal Medicine, vol. 262, no. 2, pp. 184–198, 2007. View at Publisher · View at Google Scholar
  6. B. N. Finck and D. P. Kelly, “Peroxisome proliferator-activated receptor α (PPARα) signaling in the gene regulatory control of energy metabolism in the normal and diseased heart,” Journal of Molecular and Cellular Cardiology, vol. 34, no. 10, pp. 1249–1257, 2002. View at Publisher · View at Google Scholar
  7. B. M. Forman, J. Chen, and R. M. Evans, “Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors α and δ,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 9, pp. 4312–4317, 1997. View at Publisher · View at Google Scholar
  8. H. E. Xu, M. H. Lambert, V. G. Montana et al., “Molecular recognition of fatty acids by peroxisome proliferator-activated receptors,” Molecular Cell, vol. 3, no. 3, pp. 397–403, 1999. View at Publisher · View at Google Scholar
  9. P. J. Randle, “Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years,” Diabetes/Metabolism Reviews, vol. 14, no. 4, pp. 263–283, 1998. View at Publisher · View at Google Scholar
  10. R. R. Wolfe, “Metabolic interactions between glucose and fatty acids in humans,” American Journal of Clinical Nutrition, vol. 67, no. 3, pp. 519S–526S, 1998. View at Google Scholar
  11. J. K. Reddy and T. Hashimoto, “Peroxisomal β-oxidation and peroxisome proliferator-activated receptor α: an adaptive metabolic system,” Annual Review of Nutrition, vol. 21, pp. 193–230, 2001. View at Publisher · View at Google Scholar
  12. E. Alirol and J. C. Martinou, “Mitochondria and cancer: is there a morphological connection?” Oncogene, vol. 25, no. 34, pp. 4706–4716, 2006. View at Publisher · View at Google Scholar
  13. S. Matoba, J.-G. Kang, W. D. Patino et al., “p53 regulates mitochondrial respiration,” Science, vol. 312, no. 5780, pp. 1650–1653, 2006. View at Publisher · View at Google Scholar
  14. M. Brandon, P. Baldi, and D. C. Wallace, “Mitochondrial mutations in cancer,” Oncogene, vol. 25, no. 34, pp. 4647–4662, 2006. View at Publisher · View at Google Scholar
  15. C. Eng, M. Kiuru, M. J. Fernandez, and L. A. Aaltonen, “A role for mitochondrial enzymes in inherited neoplasia and beyond,” Nature Reviews Cancer, vol. 3, no. 3, pp. 193–202, 2003. View at Publisher · View at Google Scholar
  16. S. Krauss, C.-Y. Zhang, and B. B. Lowell, “The mitochondrial uncoupling-protein homologues,” Nature Reviews Molecular Cell Biology, vol. 6, no. 3, pp. 248–261, 2005. View at Publisher · View at Google Scholar
  17. A. J. Gilde, K. A. J. M. van der Lee, P. H. M. Willemsen et al., “Peroxisome proliferator-activated receptor (PPAR) a and PPARß/d, but not PPAR?, modulate the expression of genes involved in cardiac lipid metabolism,” Circulation Research, vol. 92, no. 5, pp. 518–524, 2003. View at Publisher · View at Google Scholar
  18. Q. Yang and Y. Li, “Roles of PPARs on regulating myocardial energy and lipid homeostasis,” Journal of Molecular Medicine, vol. 85, no. 7, pp. 697–706, 2007. View at Publisher · View at Google Scholar
  19. M. E. Young, S. Patil, J. Ying et al., “Uncoupling protein 3 transcription is regulated by peroxisome proliferator-activated receptor a in the adult rodent heart,” The FASEB Journal, vol. 15, no. 3, pp. 833–845, 2001. View at Publisher · View at Google Scholar
  20. C. Pecqueur, T. Bui, C. Gelly et al., “Uncoupling protein-2 controls proliferation by promoting fatty acid oxidation and limiting glycolysis-derived pyruvate utilization,” The FASEB Journal, vol. 22, no. 1, pp. 9–18, 2008. View at Publisher · View at Google Scholar
  21. J.-W. Ryu, K. H. Hong, J. H. Maeng et al., “Overexpression of uncoupling protein 2 in THP1 monocytes inhibits ß2 integrin-mediated firm adhesion and transendothelial migration,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 5, pp. 864–870, 2004. View at Publisher · View at Google Scholar
  22. M. A. Stavinoha, J. W. RaySpellicy, M. F. Essop et al., “Evidence for mitochondrial thioesterase 1 as a peroxisome proliferator-activated receptor-a-regulated gene in cardiac and skeletal muscle,” American Journal of Physiology, vol. 287, no. 5, pp. E888–E895, 2004. View at Publisher · View at Google Scholar
  23. V. Bézaire, E. L. Seifert, and M.-E. Harper, “Uncoupling protein-3: clues in an ongoing mitochondrial mystery,” The FASEB Journal, vol. 21, no. 2, pp. 312–324, 2007. View at Publisher · View at Google Scholar
  24. J. Himms-Hagen and M.-E. Harper, “Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: an hypothesis,” Experimental Biology and Medicine, vol. 226, no. 2, pp. 78–84, 2001. View at Google Scholar
  25. P. Schrauwen, W. H. M. Saris, and M. K. C. Hesselink, “An alternative function for human uncoupling protein 3: protection of mitochondria against accumulation of nonesterified fatty acids inside the mitochondrial matrix,” The FASEB Journal, vol. 15, no. 13, pp. 2497–2502, 2001. View at Publisher · View at Google Scholar
  26. M. D. Brand, C. Affourtit, T. C. Esteves et al., “Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins,” Free Radical Biology and Medicine, vol. 37, no. 6, pp. 755–767, 2004. View at Publisher · View at Google Scholar
  27. X. R. Chen, V. C. Besson, B. Palmier, Y. Garcia, M. Plotkine, and C. Marchand-Leroux, “Neurological recovery-promoting, anti-inflammatory, and anti-oxidative effects afforded by fenofibrate, a PPAR alpha agonist, in traumatic brain injury,” Journal of Neurotrauma, vol. 24, no. 7, pp. 1119–1131, 2007. View at Publisher · View at Google Scholar
  28. A. Guellich, T. Damy, Y. Lecarpentier et al., “Role of oxidative stress in cardiac dysfunction of PPARa-/- mice,” American Journal of Physiology, vol. 293, no. 1, pp. H93–H102, 2007. View at Publisher · View at Google Scholar
  29. K. Du, S. Herzig, R. N. Kulkarni, and M. Montminy, “TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver,” Science, vol. 300, no. 5625, pp. 1574–1577, 2003. View at Publisher · View at Google Scholar
  30. S. Rossi, E. Graner, P. Febbo et al., “Fatty acid synthase expression defines distinct molecular signatures in prostate cancer,” Molecular Cancer Research, vol. 1, no. 10, pp. 707–715, 2003. View at Google Scholar
  31. A. Baron, T. Migita, D. Tang, and M. Loda, “Fatty acid synthase: a metabolic oncogene in prostate cancer?” Journal of Cellular Biochemistry, vol. 91, no. 1, pp. 47–53, 2004. View at Publisher · View at Google Scholar
  32. J. V. Swinnen, P. P. Van Veldhoven, L. Timmermans et al., “Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains,” Biochemical and Biophysical Research Communications, vol. 302, no. 4, pp. 898–903, 2003. View at Publisher · View at Google Scholar
  33. E. S. Pizer, J. Thupari, W. F. Han et al., “Malonyl-coenzyme-A is a potential mediator of cytotoxicity induced by fatty-acid synthase inhibition in human breast cancer cells and xenografts,” Cancer Research, vol. 60, no. 2, pp. 213–218, 2000. View at Google Scholar
  34. J. A. Menendez, R. Lupu, and R. Colomer, “Targeting fatty acid synthase: potential for therapeutic intervention in Her-2/neu-overexpressing breast cancer,” Drug News & Perspectives, vol. 18, no. 6, pp. 375–385, 2005. View at Publisher · View at Google Scholar
  35. J. A. Menendez, L. Vellon, I. Mehmi et al., “Inhibition of fatty acid synthase (FAS) suppresses HER2/neu (erbB-2) oncogene overexpression in cancer cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 29, pp. 10715–10720, 2004. View at Publisher · View at Google Scholar
  36. J. A. Menendez, L. Vellon, B. P. Oza, and R. Lupu, “Does endogenous fatty acid metabolism allow cancer cells to sense hypoxia and mediate hypoxic vasodilatation? Characterization of a novel molecular connection between fatty acid synthase (FAS) and hypoxia-inducible factor-1α (HIF-1α)-related expression of vascular endothelial growth factor (VEGF) in cancer cells overexpressing Her-2/neu oncogene,” Journal of Cellular Biochemistry, vol. 94, no. 5, pp. 857–863, 2005. View at Publisher · View at Google Scholar
  37. D. Botolin, Y. Wang, B. Christian, and D. B. Jump, “Docosahexaneoic acid (22:6,n-3) regulates rat hepatocyte SREBP-1 nuclear abundance by Erk- and 26S proteasome-dependent pathways,” Journal of Lipid Research, vol. 47, no. 1, pp. 181–192, 2006. View at Publisher · View at Google Scholar
  38. Q. Guo, P.-R. Wang, D. P. Milot et al., “Regulation of lipid metabolism and gene expression by fenofibrate in hamsters,” Biochimica et Biophysica Acta, vol. 1533, no. 3, pp. 220–232, 2001. View at Publisher · View at Google Scholar
  39. D. B. Jump, D. Botolin, Y. Wang, J. Xu, B. Christian, and O. Demeure, “Fatty acid regulation of hepatic gene transcription,” Journal of Nutrition, vol. 135, no. 11, pp. 2503–2506, 2005. View at Google Scholar
  40. B. König, A. Koch, J. Spielmann, C. Hilgenfeld, G. I. Stangl, and K. Eder, “Activation of PPARα lowers synthesis and concentration of cholesterol by reduction of nuclear SREBP-2,” Biochemical Pharmacology, vol. 73, no. 4, pp. 574–585, 2007. View at Publisher · View at Google Scholar
  41. R. A. K. Srivastava, R. Jahagirdar, S. Azhar, S. Sharma, and C. L. Bisgaier, “Peroxisome proliferator-activated receptor-α selective ligand reduces adiposity, improves insulin sensitivity and inhibits atherosclerosis in LDL receptor-deficient mice,” Molecular and Cellular Biochemistry, vol. 285, no. 1-2, pp. 35–50, 2006. View at Publisher · View at Google Scholar
  42. M. Grabacka, P. M. Plonka, K. Urbanska, and K. Reiss, “Peroxisome proliferator-activated receptor α activation decreases metastatic potential of melanoma cells in vitro via down-regulation of Akt,” Clinical Cancer Research, vol. 12, no. 10, pp. 3028–3036, 2006. View at Publisher · View at Google Scholar
  43. G. McKeown-Eyssen, “Epidemiology of colorectal cancer revisited: are serum triglycerides and/or plasma glucose associated with risk?” Cancer Epidemiology Biomarkers & Prevention, vol. 3, no. 8, pp. 687–695, 1994. View at Google Scholar
  44. N. Niho, M. Takahashi, T. Kitamura et al., “Concomitant suppression of hyperlipidemia and intestinal polyp formation in Apc-deficient mice by peroxisome proliferator-activated receptor ligands,” Cancer Research, vol. 63, no. 18, pp. 6090–6095, 2003. View at Google Scholar
  45. M. Buzzai, D. E. Bauer, R. G. Jones et al., “The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid ß-oxidation,” Oncogene, vol. 24, no. 26, pp. 4165–4173, 2005. View at Publisher · View at Google Scholar
  46. R. G. Jones, D. R. Plas, S. Kubek et al., “AMP-activated protein kinase induces a p53-dependent metabolic checkpoint,” Molecular Cell, vol. 18, no. 3, pp. 283–293, 2005. View at Publisher · View at Google Scholar
  47. M. Buzzai, R. G. Jones, R. K. Amaravadi et al., “Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth,” Cancer Research, vol. 67, no. 14, pp. 6745–6752, 2007. View at Publisher · View at Google Scholar
  48. W. J. Lee, M. Kim, H.-S. Park et al., “AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPARa and PGC-1,” Biochemical and Biophysical Research Communications, vol. 340, no. 1, pp. 291–295, 2006. View at Publisher · View at Google Scholar
  49. M. J. Yoon, G. Y. Lee, J.-J. Chung, Y. H. Ahn, S. H. Hong, and J. B. Kim, “Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor α,” Diabetes, vol. 55, no. 9, pp. 2562–2570, 2006. View at Publisher · View at Google Scholar
  50. R. L. Elstrom, D. E. Bauer, M. Buzzai et al., “Akt stimulates aerobic glycolysis in cancer cells,” Cancer Research, vol. 64, no. 11, pp. 3892–3899, 2004. View at Publisher · View at Google Scholar
  51. D. R. Plas and C. B. Thompson, “Akt-dependent transformation: there is more to growth than just surviving,” Oncogene, vol. 24, no. 50, pp. 7435–7442, 2005. View at Publisher · View at Google Scholar
  52. I. Vivanco and C. L. Sawyers, “The phosphatidylinositol 3-kinase-AKT pathway in human cancer,” Nature Reviews Cancer, vol. 2, no. 7, pp. 489–501, 2002. View at Publisher · View at Google Scholar
  53. A. Garami, F. J. T. Zwartkruis, T. Nobukuni et al., “Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2,” Molecular Cell, vol. 11, no. 6, pp. 1457–1466, 2003. View at Publisher · View at Google Scholar
  54. M. Høyer-Hansen and M. Jäättelä, “AMP-activated protein kinase: a universal regulator of autophagy?” Autophagy, vol. 3, no. 4, pp. 381–383, 2007. View at Google Scholar
  55. Y. Zhang, X. Gao, L. J. Saucedo, B. Ru, B. A. Edgar, and D. Pan, “Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins,” Nature Cell Biology, vol. 5, no. 6, pp. 578–581, 2003. View at Publisher · View at Google Scholar
  56. M. Gamerdinger, A. B. Clement, and C. Behl, “Cholesterol-like effects of selective cyclooxygenase inhibitors and fibrates on cellular membranes and amyloid-β production,” Molecular Pharmacology, vol. 72, no. 1, pp. 141–151, 2007. View at Publisher · View at Google Scholar
  57. G. Suchankova, M. Tekle, A. K. Saha, N. B. Ruderman, S. D. Clarke, and T. W. Gettys, “Dietary polyunsaturated fatty acids enhance hepatic AMP-activated protein kinase activity in rats,” Biochemical and Biophysical Research Communications, vol. 326, no. 4, pp. 851–858, 2005. View at Publisher · View at Google Scholar
  58. D. R. Alessi, K. Sakamoto, and J. R. Bayascas, “LKB1-dependent signaling pathways,” Annual Review of Biochemistry, vol. 75, pp. 137–163, 2006. View at Publisher · View at Google Scholar
  59. A. L. Edinger and C. B. Thompson, “Defective autophagy leads to cancer,” Cancer Cell, vol. 4, no. 6, pp. 422–424, 2003. View at Publisher · View at Google Scholar
  60. S. Jin, R. S. DiPaola, R. Mathew, and E. White, “Metabolic catastrophe as a means to cancer cell death,” Journal of Cell Science, vol. 120, no. 3, pp. 379–383, 2007. View at Publisher · View at Google Scholar
  61. S. Pattingre and B. Levine, “Bcl-2 inhibition of autophagy: a new route to cancer?” Cancer Research, vol. 66, no. 6, pp. 2885–2888, 2006. View at Publisher · View at Google Scholar
  62. X. Qu, J. Yu, G. Bhagat et al., “Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene,” Journal of Clinical Investigation, vol. 112, no. 12, pp. 1809–1820, 2003. View at Publisher · View at Google Scholar
  63. Z. Yue, S. Jin, C. Yang, A. J. Levine, and N. Heintz, “Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 25, pp. 15077–15082, 2003. View at Publisher · View at Google Scholar
  64. A. Iwamaru, Y. Kondo, E. Iwado et al., “Silencing mammalian target of rapamycin signaling by small interfering RNA enhances rapamycin-induced autophagy in malignant glioma cells,” Oncogene, vol. 26, no. 13, pp. 1840–1851, 2007. View at Publisher · View at Google Scholar
  65. A. Tzatsos and P. N. Tsichlis, “Energy depletion inhibits phosphatidylinositol 3-kinase/Akt signaling and induces apoptosis via AMP-activated protein kinase-dependent phosphorylation of IRS-1 at Ser-794,” Journal of Biological Chemistry, vol. 282, no. 25, pp. 18069–18082, 2007. View at Publisher · View at Google Scholar
  66. Q. Jin, L. Feng, C. Behrens et al., “Implication of AMP-activated protein kinase and Akt-regulated survivin in lung cancer chemopreventive activities of deguelin,” Cancer Research, vol. 67, no. 24, pp. 11630–11639, 2007. View at Publisher · View at Google Scholar
  67. M. Grabacka, W. Placha, P. M. Plonka et al., “Inhibition of melanoma metastases by fenofibrate,” Archives of Dermatological Research, vol. 296, no. 2, pp. 54–58, 2004. View at Publisher · View at Google Scholar
  68. V. Mirouse, L. L. Swick, N. Kazgan, D. St Johnston, and J. E. Brenman, “LKB1 and AMPK maintain epithelial cell polarity under energetic stress,” Journal of Cell Biology, vol. 177, no. 3, pp. 387–392, 2007. View at Publisher · View at Google Scholar
  69. D. Bishop-Bailey, “Peroxisome proliferator-activated receptors in the cardiovascular system,” British Journal of Pharmacology, vol. 129, no. 5, pp. 823–834, 2000. View at Publisher · View at Google Scholar
  70. E.-L. Paukkeri, T. Leppänen, O. Sareila, K. Vuolteenaho, H. Kankaanranta, and E. Moilanen, “PPARα agonists inhibit nitric oxide production by enhancing iNOS degradation in LPS-treated macrophages,” British Journal of Pharmacology, vol. 152, no. 7, pp. 1081–1091, 2007. View at Publisher · View at Google Scholar
  71. B. Staels, W. Koenig, A. Habib et al., “Activation of human aortic smooth-muscle cells is inhibited by PPARa but not by PPAR? activators,” Nature, vol. 393, no. 6687, pp. 790–793, 1998. View at Publisher · View at Google Scholar
  72. S. Cuzzocrea, S. Bruscoli, E. Mazzon et al., “Peroxisome proliferator-activated receptor-a contributes to the anti-inflammatory activity of glucocorticoids,” Molecular Pharmacology, vol. 73, no. 2, pp. 323–337, 2008. View at Publisher · View at Google Scholar
  73. S. Cuzzocrea, E. Mazzon, R. Di Paola et al., “The role of the peroxisome proliferator-activated receptor-a (PPAR-a) in the regulation of acute inflammation,” Journal of Leukocyte Biology, vol. 79, no. 5, pp. 999–1010, 2006. View at Publisher · View at Google Scholar
  74. P. Delerive, K. De Bosscher, W. Vanden Berghe, J.-C. Fruchart, G. Haegeman, and B. Staels, “DNA binding-independent induction of IκBα gene transcription by PPARα,” Molecular Endocrinology, vol. 16, no. 5, pp. 1029–1039, 2002. View at Publisher · View at Google Scholar
  75. S. Dubrac, P. Stoitzner, D. Pirkebner et al., “Peroxisome proliferator-activated receptor-a activation inhibits Langerhans cell function,” Journal of Immunology, vol. 178, no. 7, pp. 4362–4372, 2007. View at Google Scholar
  76. W. Vanden Berghe, L. Vermeulen, P. Delerive, K. De Bosscher, B. Staels, and G. Haegeman, “A paradigm for gene regulation: inflammation, NF-κB and PPAR,” Advances in Experimental Medicine and Biology, vol. 544, pp. 181–196, 2003. View at Google Scholar
  77. R. Grau, C. Punzón, M. Fresno, and M. A. Iñiguez, “Peroxisome-proliferator-activated receptor α agonists inhibit cyclo-oxygenase 2 and vascular endothelial growth factor transcriptional activation in human colorectal carcinoma cells via inhibition of activator protein-1,” Biochemical Journal, vol. 395, no. 1, pp. 81–88, 2006. View at Publisher · View at Google Scholar
  78. A. Mishra, A. Chaudhary, and S. Sethi, “Oxidized omega-3 fatty acids inhibit NF-κB activation via a PPARα-dependent pathway,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 9, pp. 1621–1627, 2004. View at Publisher · View at Google Scholar
  79. K. Murakami, H. Bujo, H. Unoki, and Y. Saito, “Effect of PPARα activation of macrophages on the secretion of inflammatory cytokines in cultured adipocytes,” European Journal of Pharmacology, vol. 561, no. 1–3, pp. 206–213, 2007. View at Publisher · View at Google Scholar
  80. E. S. Radisky and D. C. Radisky, “Stromal induction of breast cancer: inflammation and invasion,” Reviews in Endocrine & Metabolic Disorders, vol. 8, no. 3, pp. 279–287, 2007. View at Publisher · View at Google Scholar
  81. C. Fabre, G. Carvalho, E. Tasdemir et al., “NF-?B inhibition sensitizes to starvation-induced cell death in high-risk myelodysplastic syndrome and acute myeloid leukemia,” Oncogene, vol. 26, no. 28, pp. 4071–4083, 2007. View at Publisher · View at Google Scholar
  82. B. B. Aggarwal, “Nuclear factor-κB: the enemy within,” Cancer Cell, vol. 6, no. 3, pp. 203–208, 2004. View at Publisher · View at Google Scholar
  83. K. S. Ahn, G. Sethi, and B. B. Aggarwal, “Embelin, an inhibitor of X chromosome-linked inhibitor-of-apoptosis protein, blocks nuclear factor-κB (NF-κB) signaling pathway leading to suppression of NF-κB-regulated antiapoptotic and metastatic gene products,” Molecular Pharmacology, vol. 71, no. 1, pp. 209–219, 2007. View at Publisher · View at Google Scholar
  84. A. S. Nair, S. Shishodia, K. S. Ahn, A. B. Kunnumakkara, G. Sethi, and B. B. Aggarwal, “Deguelin, an Akt inhibitor, suppresses IκBα kinase activation leading to suppression of NF-κB-regulated gene expression, potentiation of apoptosis, and inhibition of cellular invasion,” Journal of Immunology, vol. 177, no. 8, pp. 5612–5622, 2006. View at Google Scholar
  85. A. Kaipainen, M. W. Kieran, S. Huang et al., “PPARa deficiency in inflammatory cells suppresses tumor growth,” PLoS ONE, vol. 2, no. 2, p. e260, 2007. View at Publisher · View at Google Scholar
  86. T. Mäkitie, P. Summanen, A. Tarkkanen, and T. Kivelä, “Tumor-infiltrating macrophages (CD68+ cells) and prognosis in malignant uveal melanoma,” Investigative Ophthalmology & Visual Science, vol. 42, no. 7, pp. 1414–1421, 2001. View at Google Scholar
  87. A. Lardner, “The effects of extracellular pH on immune function,” Journal of Leukocyte Biology, vol. 69, no. 4, pp. 522–530, 2001. View at Google Scholar