Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2008 (2008), Article ID 931074, 7 pages
http://dx.doi.org/10.1155/2008/931074
Review Article

Peroxisome Proliferator-Activated Receptors and Progression of Colorectal Cancer

1Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
2Departments of Gastrointestinal Oncology and Cancer Biology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030-4009, USA

Received 14 March 2008; Accepted 29 April 2008

Academic Editor: Dipak Panigrahy

Copyright © 2008 Dingzhi Wang and Raymond N. DuBois. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. D. Solomon, J. J. V. McMurray, M. A. Pfeffer et al., “Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention,” New England Journal of Medicine, vol. 352, no. 11, pp. 1071–1080, 2005. View at Publisher · View at Google Scholar
  2. R. S. Bresalier, R. S. Sandler, H. Quan et al., “Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial,” New England Journal of Medicine, vol. 352, no. 11, pp. 1092–1102, 2005. View at Publisher · View at Google Scholar
  3. N. A. Nussmeier, A. A. Whelton, M. T. Brown et al., “Complications of the COX-2 inhibitors parecoxib and valdecoxib after cardiac surgery,” New England Journal of Medicine, vol. 352, no. 11, pp. 1081–1091, 2005. View at Publisher · View at Google Scholar
  4. I. Issemann and S. Green, “Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators,” Nature, vol. 347, no. 6294, pp. 645–650, 1990. View at Publisher · View at Google Scholar
  5. J. P. Berger, T. E. Akiyama, and P. T. Meinke, “PPARs: therapeutic targets for metabolic disease,” Trends in Pharmacological Sciences, vol. 26, no. 5, pp. 244–251, 2005. View at Publisher · View at Google Scholar
  6. L. Michalik, B. Desvergne, and W. Wahli, “Peroxisome-proliferator-activated receptors and cancers: complex stories,” Nature Reviews Cancer, vol. 4, no. 1, pp. 61–70, 2004. View at Publisher · View at Google Scholar
  7. S. A. Kliewer, B. M. Forman, B. Blumberg et al., “Differential expression and activation of a family of murine peroxisome proliferator-activated receptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 15, pp. 7355–7359, 1994. View at Publisher · View at Google Scholar
  8. D. J. Mangelsdorf and R. M. Evans, “The RXR heterodimers and orphan receptors,” Cell, vol. 83, no. 6, pp. 841–850, 1995. View at Publisher · View at Google Scholar
  9. Y.-X. Wang, C.-H. Lee, S. Tiep et al., “Peroxisome-proliferator-activated receptor d activates fat metabolism to prevent obesity,” Cell, vol. 113, no. 2, pp. 159–170, 2003. View at Publisher · View at Google Scholar
  10. T. Tanaka, J. Yamamoto, S. Iwasaki et al., “Activation of peroxisome proliferator-activated receptor d induces fatty acid ß-oxidation in skeletal muscle and attenuates metabolic syndrome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 26, pp. 15924–15929, 2003. View at Publisher · View at Google Scholar
  11. W. R. Oliver Jr., J. L. Shenk, M. R. Snaith et al., “A selective peroxisome proliferator-activated receptor d agonist promotes reverse cholesterol transport,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 9, pp. 5306–5311, 2001. View at Publisher · View at Google Scholar
  12. R. M. Evans, G. D. Barish, and Y.-X. Wang, “PPARs and the complex journey to obesity,” Nature Medicine, vol. 10, no. 4, pp. 355–361, 2004. View at Publisher · View at Google Scholar
  13. J. M. Peters, R. C. Cattley, and F. J. Gonzalez, “Role of PPARα in the mechanism of action of the nongenotoxic carcinogen and peroxisome proliferator Wy-14,643,” Carcinogenesis, vol. 18, no. 11, pp. 2029–2033, 1997. View at Publisher · View at Google Scholar
  14. R. A. Gupta, D. Wang, S. Katkuri, H. Wang, S. K. Dey, and R. N. DuBois, “Activation of nuclear hormone receptor peroxisome proliferator-activated receptor-δ accelerates intestinal adenoma growth,” Nature Medicine, vol. 10, no. 3, pp. 245–247, 2004. View at Publisher · View at Google Scholar
  15. D. Wang, H. Wang, Y. Guo et al., “Crosstalk between peroxisome proliferator-activated receptor d and VEGF stimulates cancer progression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 50, pp. 19069–19074, 2006. View at Publisher · View at Google Scholar
  16. M. Grabacka, P. M. Plonka, K. Urbanska, and K. Reiss, “Peroxisome proliferator-activated receptor α activation decreases metastatic potential of melanoma cells in vitro via down-regulation of Akt,” Clinical Cancer Research, vol. 12, no. 10, pp. 3028–3036, 2006. View at Publisher · View at Google Scholar
  17. N. Strakova, J. Ehrmann, J. Bartos, J. Malikova, J. Dolezel, and Z. Kolar, “Peroxisome proliferator-activated receptors (PPAR) agonists affect cell viability, apoptosis and expression of cell cycle related proteins in cell lines of glial brain tumors,” Neoplasma, vol. 52, no. 2, pp. 126–136, 2005. View at Google Scholar
  18. R. Grau, C. Punzón, M. Fresno, and M. A. Iñiguez, “Peroxisome-proliferator-activated receptor α agonists inhibit cyclo-oxygenase 2 and vascular endothelial growth factor transcriptional activation in human colorectal carcinoma cells via inhibition of activator protein-1,” Biochemical Journal, vol. 395, no. 1, pp. 81–88, 2006. View at Publisher · View at Google Scholar
  19. R. N. DuBois, R. Gupta, J. Brockman, B. S. Reddy, S. L. Krakow, and M. A. Lazar, “The nuclear eicosanoid receptor, PPARγ, is aberrantly expressed in colonic cancers,” Carcinogenesis, vol. 19, no. 1, pp. 49–53, 1998. View at Publisher · View at Google Scholar
  20. P. Sarraf, E. Mueller, W. M. Smith et al., “Loss-of-function mutations in PPAR? associated with human colon cancer,” Molecular Cell, vol. 3, no. 6, pp. 799–804, 1999. View at Publisher · View at Google Scholar
  21. M. L. Slattery, K. Curtin, R. Wolff et al., “PPAR? and colon and rectal cancer: associations with specific tumor mutations, aspirin, ibuprofen and insulin-related genes (United States),” Cancer Causes and Control, vol. 17, no. 3, pp. 239–249, 2006. View at Publisher · View at Google Scholar
  22. S. Landi, V. Moreno, L. Gioia-Patricola et al., “Association of common polymorphisms in inflammatory genes interleukin (IL)6, IL8, tumor necrosis factor a, NFKB1, and peroxisome proliferator-activated receptor ? with colorectal cancer,” Cancer Research, vol. 63, no. 13, pp. 3560–3566, 2003. View at Google Scholar
  23. T. Ikezoe, C. W. Miller, S. Kawano et al., “Mutational analysis of the peroxisome proliferator-activated receptor ? gene in human malignancies,” Cancer Research, vol. 61, no. 13, pp. 5307–5310, 2001. View at Google Scholar
  24. S. Altiok, M. Xu, and B. M. Spiegelman, “PPARγ induces cell cycle withdrawal: inhibition of E2f/DP DNA-binding activity via down-regulation of PP2A,” Genes and Development, vol. 11, no. 15, pp. 1987–1998, 1997. View at Publisher · View at Google Scholar
  25. S. Wakino, U. Kintscher, S. Kim, F. Yin, W. A. Hsueh, and R. E. Law, “Peroxisome proliferator-activated receptor γ ligands inhibit retinoblastoma phosphorylation and G1S transition in vascular smooth muscle cells,” Journal of Biological Chemistry, vol. 275, no. 29, pp. 22435–22441, 2000. View at Publisher · View at Google Scholar
  26. A. P. Heaney, M. Fernando, and S. Melmed, “PPAR-γ receptor ligands: novel therapy for pituitary adenomas,” The Journal of Clinical Investigation, vol. 111, no. 9, pp. 1381–1388, 2003. View at Publisher · View at Google Scholar
  27. S. Kitamura, Y. Miyazaki, S. Hiraoka et al., “PPAR? agonists inhibit cell growth and suppress the expression of cyclin D1 and EGF-like growth factors in ras-transformed rat intestinal epithelial cells,” International Journal of Cancer, vol. 94, no. 3, pp. 335–342, 2001. View at Publisher · View at Google Scholar
  28. C. Qin, R. Burghardt, R. Smith, M. Wormke, J. Stewart, and S. Safe, “Peroxisome proliferator-activated receptor γ agonists induce proteasome-dependent degradation of cyclin D1 and estrogen receptor α in MCF-7 breast cancer cells,” Cancer Research, vol. 63, no. 5, pp. 958–964, 2003. View at Google Scholar
  29. M. Toyota, Y. Miyazaki, S. Kitamura et al., “Peroxisome proliferator-activated receptor ? reduces the growth rate of pancreatic cancer cells through the reduction of cyclin D1,” Life Sciences, vol. 70, no. 13, pp. 1565–1575, 2002. View at Publisher · View at Google Scholar
  30. H. Koga, S. Sakisaka, M. Harada et al., “Involvement of p21WAF1/Cip1, p27Kip1, and p18INK4c in troglitazone-induced cell-cycle arrest in human hepatoma cell lines,” Hepatology, vol. 33, no. 5, pp. 1087–1097, 2001. View at Publisher · View at Google Scholar
  31. R. A. Gupta, P. Sarraf, J. A. Brockman et al., “Peroxisome proliferator-activated receptor ? and transforming growth factor-ß pathways inhibit intestinal epithelial cell growth by regulating levels of TSC-22,” Journal of Biological Chemistry, vol. 278, no. 9, pp. 7431–7438, 2003. View at Publisher · View at Google Scholar
  32. T. Satoh, M. Toyoda, H. Hoshino et al., “Activation of peroxisome proliferator-activated receptor-? stimulates the growth arrest and DNA-damage inducible 153 gene in non-small cell lung carcinoma cells,” Oncogene, vol. 21, no. 14, pp. 2171–2180, 2002. View at Publisher · View at Google Scholar
  33. B. Farrow and B. M. Evers, “Activation of PPARγ increases PTEN expression in pancreatic cancer cells,” Biochemical and Biophysical Research Communications, vol. 301, no. 1, pp. 50–53, 2003. View at Publisher · View at Google Scholar
  34. G. G. Chen, J. F. Y. Lee, S. H. Wang, U. P. F. Chan, P. C. Ip, and W. Y. Lau, “Apoptosis induced by activation of peroxisome-proliferator activated receptor-gamma is associated with Bcl-2 and Nf-κB in human colon cancer,” Life Sciences, vol. 70, no. 22, pp. 2631–2646, 2002. View at Publisher · View at Google Scholar
  35. X. Xin, S. Yang, J. Kowalski, and M. E. Gerritsen, “Peroxisome proliferator-activated receptor γ ligands are potent inhibitors of angiogenesis in vitro and in vivo,” Journal of Biological Chemistry, vol. 274, no. 13, pp. 9116–9121, 1999. View at Publisher · View at Google Scholar
  36. D. Panigrahy, S. Singer, L. Q. Shen et al., “PPAR? ligands inhibit primary tumor growth and metastasis by inhibiting angiogenesis,” The Journal of Clinical Investigation, vol. 110, no. 7, pp. 923–932, 2002. View at Publisher · View at Google Scholar
  37. H. Liu, C. Zang, M. H. Fenner, K. Possinger, and E. Elstner, “PPARγ ligands and ATRA inhibit the invasion of human breast cancer cells in vitro,” Breast Cancer Research and Treatment, vol. 79, no. 1, pp. 63–74, 2003. View at Publisher · View at Google Scholar
  38. D. Shen, C. Deng, and M. Zhang, “Peroxisome proliferator-activated receptor γ agonists inhibit the proliferation and invasion of human colon cancer cells,” Postgraduate Medical Journal, vol. 83, no. 980, pp. 414–419, 2007. View at Publisher · View at Google Scholar
  39. G. D. Girnun, W. M. Smith, S. Drori et al., “APC-dependent suppression of colon carcinogenesis by PPAR?,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 21, pp. 13771–13776, 2002. View at Publisher · View at Google Scholar
  40. H. Inoue, T. Tanabe, and K. Umesono, “Feedback control of cyclooxygenase-2 expression through PPARγ,” Journal of Biological Chemistry, vol. 275, no. 36, pp. 28028–28032, 2000. View at Publisher · View at Google Scholar
  41. O. Quraishi, J. A. Mancini, and D. Riendeau, “Inhibition of inducible prostaglandin E2 synthase by 15-deoxy-Δ12,14-prostaglandin J2 and polyunsaturated fatty acids,” Biochemical Pharmacology, vol. 63, no. 6, pp. 1183–1189, 2002. View at Publisher · View at Google Scholar
  42. O. Schröder, Y. Yudina, A. Sabirsh, N. Zahn, J. Z. Haeggström, and J. Stein, “15-deoxy-Δ12,14-prostaglandin J2 inhibits the expression of microsomal prostaglandin E synthase type 2 in colon cancer cells,” Journal of Lipid Research, vol. 47, no. 5, pp. 1071–1080, 2006. View at Publisher · View at Google Scholar
  43. P. Sarraf, E. Mueller, D. Jones et al., “Differentiation and reversal of malignant changes in colon cancer through PPAR?,” Nature Medicine, vol. 4, no. 9, pp. 1046–1052, 1998. View at Publisher · View at Google Scholar
  44. E. Osawa, A. Nakajima, K. Wada et al., “Peroxisome proliferator-activated receptor ? ligands suppress colon carcinogenesis induced by azoxymethane in mice,” Gastroenterology, vol. 124, no. 2, pp. 361–367, 2003. View at Publisher · View at Google Scholar
  45. A.-M. Lefebvre, I. Chen, P. Desreumaux et al., “Activation of the peroxisome proliferator-activated receptor ? promotes the development of colon tumors in C57BL/6J-APCMin/+ mice,” Nature Medicine, vol. 4, no. 9, pp. 1053–1057, 1998. View at Publisher · View at Google Scholar
  46. E. Saez, P. Tontonoz, M. C. Nelson et al., “Activators of the nuclear receptor PPAR? enhance colon polyp formation,” Nature Medicine, vol. 4, no. 9, pp. 1058–1061, 1998. View at Publisher · View at Google Scholar
  47. M. V. Pino, M. F. Kelley, and Z. Jayyosi, “Promotion of colon tumors in C57BL/6J-APCmin/+ mice by thiazolidinedione PPARγ agonists and a structurally Unrelated PPARγ agonist,” Toxicologic Pathology, vol. 32, no. 1, pp. 58–63, 2004. View at Publisher · View at Google Scholar
  48. K. Yang, K.-H. Fan, S. A. Lamprecht et al., “Peroxisome proliferator-activated receptor ? agonist troglitazone induces colon tumors in normal C57BL/6J mice and enhances colonic carcinogenesis in APC1638N/+Mlh1+/- double mutant mice,” International Journal of Cancer, vol. 116, no. 4, pp. 495–499, 2005. View at Publisher · View at Google Scholar
  49. N. Niho, M. Takahashi, T. Kitamura et al., “Concomitant suppression of hyperlipidemia and intestinal polyp formation in Apc-deficient mice by peroxisome proliferator-activated receptor ligands,” Cancer Research, vol. 63, no. 18, pp. 6090–6095, 2003. View at Google Scholar
  50. N. Niho, M. Takahashi, Y. Shoji et al., “Dose-dependent suppression of hyperlipidemia and intestinal polyp formation in Min mice by pioglitazone, a PPAR? ligand,” Cancer Science, vol. 94, no. 11, pp. 960–964, 2003. View at Publisher · View at Google Scholar
  51. C. A. McAlpine, Y. Barak, I. Matise, and R. T. Cormier, “Intestinal-specific PPARγ deficiency enhances tumorigenesis in APCMin/+ mice,” International Journal of Cancer, vol. 119, no. 10, pp. 2339–2346, 2006. View at Publisher · View at Google Scholar
  52. N. Suh, Y. Wang, C. R. Williams et al., “A new ligand for the peroxisome proliferator-activated receptor-? (PPAR-?), GW7845, inhibits rat mammary carcinogenesis,” Cancer Research, vol. 59, no. 22, pp. 5671–5673, 1999. View at Google Scholar
  53. E. Saez, J. Rosenfeld, A. Livolsi et al., “PPAR? signaling exacerbates mammary gland tumor development,” Genes and Development, vol. 18, no. 5, pp. 528–540, 2004. View at Publisher · View at Google Scholar
  54. H. Lim, R. A. Gupta, W.-G. Ma et al., “Cyclo-oxygenase-2-derived prostacyclin mediates embryo implantation in the mouse via PPARd,” Genes and Development, vol. 13, no. 12, pp. 1561–1574, 1999. View at Publisher · View at Google Scholar
  55. C.-H. Lee, A. Chawla, N. Urbiztondo, D. Liao, W. A. Boisvert, and R. M. Evans, “Transcriptional repression of atherogenic inflammation: modulation by PPARδ,” Science, vol. 302, no. 5644, pp. 453–457, 2003. View at Publisher · View at Google Scholar
  56. C.-M. Hao, R. Redha, J. Morrow, and M. D. Breyer, “Peroxisome proliferator-activated receptor δ activation promotes cell survival following hypertonic stress,” Journal of Biological Chemistry, vol. 277, no. 24, pp. 21341–21345, 2002. View at Publisher · View at Google Scholar
  57. N. Di-Poï, N. S. Tan, L. Michalik, W. Wahli, and B. Desvergne, “Antiapoptotic role of PPARβ in keratinocytes via transcriptional control of the Akt1 signaling pathway,” Molecular Cell, vol. 10, no. 4, pp. 721–733, 2002. View at Publisher · View at Google Scholar
  58. N. Di-Poï, L. Michalik, N. S. Tan, B. Desvergne, and W. Wahli, “The anti-apoptotic role of PPARβ contributes to efficient skin wound healing,” Journal of Steroid Biochemistry and Molecular Biology, vol. 85, no. 2-5, pp. 257–265, 2003. View at Publisher · View at Google Scholar
  59. T.-C. He, T. A. Chan, B. Vogelstein, and K. W. Kinzler, “PPARδ is an APC-regulated target of nonsteroidal anti-inflammatory drugs,” Cell, vol. 99, no. 3, pp. 335–345, 1999. View at Publisher · View at Google Scholar
  60. R. A. Gupta, J. Tan, W. F. Krause et al., “Prostacyclin-mediated activation of peroxisome proliferator-activated receptor d in colorectal cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 24, pp. 13275–13280, 2000. View at Publisher · View at Google Scholar
  61. O. Takayama, H. Yamamoto, B. Damdinsuren et al., “Expression of PPARd in multistage carcinogenesis of the colorectum: implications of malignant cancer morphology,” British Journal of Cancer, vol. 95, no. 7, pp. 889–895, 2006. View at Publisher · View at Google Scholar
  62. J. Vanamala, A. Glagolenko, P. Yang et al., “Dietary fish oil and pectin enhance colonocyte apoptosis in part through suppression of PPARd/PGE2 and elevation of PGE3,” Carcinogenesis, vol. 29, no. 4, pp. 790–796, 2008. View at Publisher · View at Google Scholar
  63. N. Ouyang, J. L. Williams, and B. Rigas, “NO-donating aspirin isomers downregulate peroxisome proliferator-activated receptor (PPAR)δ expression in APCmin/+ mice proportionally to their tumor inhibitory effect: implications for the role of PPARδ in carcinogenesis,” Carcinogenesis, vol. 27, no. 2, pp. 232–239, 2006. View at Publisher · View at Google Scholar
  64. C. L. E. Siezen, M. J. Tijhuis, N. R. Kram et al., “Protective effect of nonsteroidal anti-inflammatory drugs on colorectal adenomas is modified by a polymorphism in peroxisome proliferator-activated receptor d,” Pharmacogenetics and Genomics, vol. 16, no. 1, pp. 43–50, 2006. View at Publisher · View at Google Scholar
  65. J. Shao, H. Sheng, and R. N. DuBois, “Peroxisome proliferator-activated receptors modulate K-Ras-mediated transformation of intestinal epithelial cells,” Cancer Research, vol. 62, no. 11, pp. 3282–3288, 2002. View at Google Scholar
  66. D. Wang, H. Wang, Q. Shi et al., “Prostaglandin E2 promotes colorectal adenoma growth via transactivation of the nuclear peroxisome proliferator-activated receptor d,” Cancer Cell, vol. 6, no. 3, pp. 285–295, 2004. View at Publisher · View at Google Scholar
  67. L. Xu, C. Han, and T. Wu, “A novel positive feedback loop between peroxisome proliferator-activated receptor-δ and prostaglandin E2 signaling pathways for human cholangiocarcinoma cell growth,” Journal of Biological Chemistry, vol. 281, no. 45, pp. 33982–33996, 2006. View at Publisher · View at Google Scholar
  68. L. Xu, C. Han, K. Lim, and T. Wu, “Cross-talk between peroxisome proliferator-activated receptor δ and cytosolic phospholipase A2α/cyclooxygenase-2/prostaglandin E2 signaling pathways in human hepatocellular carcinoma cells,” Cancer Research, vol. 66, no. 24, pp. 11859–11868, 2006. View at Publisher · View at Google Scholar
  69. B. H. Park, B. Vogelstein, and K. W. Kinzler, “Genetic disruption of PPARδ decreases the tumorigenicity of human colon cancer cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 5, pp. 2598–2603, 2001. View at Publisher · View at Google Scholar
  70. Y. Barak, D. Liao, W. He et al., “Effects of peroxisome proliferator-activated receptor d on placentation, adiposity, and colorectal cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 1, pp. 303–308, 2002. View at Publisher · View at Google Scholar
  71. F. S. Harman, C. J. Nicol, H. E. Marin, J. M. Ward, F. J. Gonzalez, and J. M. Peters, “Peroxisome proliferator-activated receptor-δ attenuates colon carcinogenesis,” Nature Medicine, vol. 10, no. 5, pp. 481–483, 2004. View at Publisher · View at Google Scholar
  72. K. R. Reed, O. J. Sansom, A. J. Hayes et al., “PPARd status and Apc-mediated tumourigenesis in the mouse intestine,” Oncogene, vol. 23, no. 55, pp. 8992–8996, 2004. View at Publisher · View at Google Scholar
  73. H. E. Marin, M. A. Peraza, A. N. Billin et al., “Ligand activation of peroxisome proliferator-activated receptor ß inhibits colon carcinogenesis,” Cancer Research, vol. 66, no. 8, pp. 4394–4401, 2006. View at Publisher · View at Google Scholar
  74. K. Nadra, S. I. Anghel, E. Joye et al., “Differentiation of trophoblast giant cells and their metabolic functions are dependent on peroxisome proliferator-activated receptor ß/d,” Molecular and Cellular Biology, vol. 26, no. 8, pp. 3266–3281, 2006. View at Publisher · View at Google Scholar
  75. J. M. Peters, S. S. T. Lee, W. Li et al., “Growths, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor ß(d),” Molecular and Cellular Biology, vol. 20, no. 14, pp. 5119–5128, 2000. View at Publisher · View at Google Scholar
  76. R. L. Stephen, M. C. U. Gustafsson, M. Jarvis et al., “Activation of peroxisome proliferator-activated receptor d stimulates the proliferation of human breast and prostate cancer cell lines,” Cancer Research, vol. 64, no. 9, pp. 3162–3170, 2004. View at Publisher · View at Google Scholar
  77. B. Glinghammar, J. Skogsberg, A. Hamsten, and E. Ehrenborg, “PPARδ activation induces COX-2 gene expression and cell proliferation in human hepatocellular carcinoma cells,” Biochemical and Biophysical Research Communications, vol. 308, no. 2, pp. 361–368, 2003. View at Publisher · View at Google Scholar
  78. T. Daikoku, S. Tranguch, A. Chakrabarty et al., “Extracellular signal-regulated kinase is a target of cyclooxygenase-1-peroxisome proliferator-activated receptor-d signaling in epithelial ovarian cancer,” Cancer Research, vol. 67, no. 11, pp. 5285–5292, 2007. View at Publisher · View at Google Scholar
  79. A. Abdollahi, C. Schwager, J. Kleeff et al., “Transcriptional network governing the angiogenic switch in human pancreatic cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 31, pp. 12890–12895, 2007. View at Publisher · View at Google Scholar
  80. Y. Yin, R. G. Russell, L. E. Dettin et al., “Peroxisome proliferator-activated receptor d and ? agonists differentially alter tumor differentiation and progression during mammary carcinogenesis,” Cancer Research, vol. 65, no. 9, pp. 3950–3957, 2005. View at Publisher · View at Google Scholar