Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2009, Article ID 498352, 9 pages
http://dx.doi.org/10.1155/2009/498352
Review Article

Dietary Modulation of Inflammation-Induced Colorectal Cancer through PPAR

Cell and Organism Section, Nutritional Immunology and Molecular Nutrition Laboratory, Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

Received 15 December 2008; Revised 9 February 2009; Accepted 19 February 2009

Academic Editor: Rosa Canuto

Copyright © 2009 Ashlee B. Carter et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Atreya and M. F. Neurath, “Immune cells in colorectal cancer: prognostic relevance and therapeutic strategies,” Expert Review of Anticancer Therapy, vol. 8, no. 4, pp. 561–572, 2008. View at Publisher · View at Google Scholar
  2. J. Xie and S. H. Itzkowitz, “Cancer in inflammatory bowel disease,” World Journal of Gastroenterology, vol. 14, no. 3, pp. 378–389, 2008. View at Publisher · View at Google Scholar
  3. B. A. Miller, K. C. Chu, B. F. Hankey, and L. A. G. Ries, “Cancer incidence and mortality patterns among specific Asian and Pacific Islander populations in the U.S,” Cancer Causes & Control, vol. 19, no. 3, pp. 227–256, 2008. View at Publisher · View at Google Scholar
  4. L. A. Ries, D. Melbert, M. Krapcho et al., Eds., “SEER cancer statistics review, 1975–2005,” Annual Report, National Cancer Institute, Bethesda, Md, USA, 2008. View at Google Scholar
  5. S. Spunt, W. Furman, M. La Quaglia, M. Bondy, and R. Goldberg, “Cancer epidemiology in older adolescents and young adults 15 to 29 years of age,” SEER AYA Monograph, National Cancer Institute, Bethesda, Md, USA, 2006. View at Google Scholar
  6. T. L. Zisman and D. T. Rubin, “Colorectal cancer and dysplasia in inflammatory bowel disease,” World Journal of Gastroenterology, vol. 14, no. 17, pp. 2662–2669, 2008. View at Publisher · View at Google Scholar
  7. G. Greicius, V. Arulampalam, and S. Pettersson, “A CLA's act: feeding away inflammation,” Gastroenterology, vol. 127, no. 3, pp. 994–996, 2004. View at Publisher · View at Google Scholar
  8. D. C. Savage, “Microbial ecology of the gastrointestinal tract,” Annual Review of Microbiology, vol. 31, pp. 107–133, 1977. View at Google Scholar
  9. J. Chow and S. K. Mazmanian, “Getting the bugs out of the immune system: do bacterial microbiota “fix” intestinal T cell responses?” Cell Host & Microbe, vol. 5, no. 1, pp. 8–12, 2009. View at Publisher · View at Google Scholar
  10. L. R. Ferguson and M. Philpott, “Cancer prevention by dietary bioactive components that target the immune response,” Current Cancer Drug Targets, vol. 7, no. 5, pp. 459–464, 2007. View at Publisher · View at Google Scholar
  11. J. M. Olefsky, “Nuclear receptor minireview series,” The Journal of Biological Chemistry, vol. 276, no. 40, pp. 36863–36864, 2001. View at Publisher · View at Google Scholar
  12. E. K.-H. Chow, B. Razani, and G. Cheng, “Innate immune system regulation of nuclear hormone receptors in metabolic diseases,” Journal of Leukocyte Biology, vol. 82, no. 2, pp. 187–195, 2007. View at Publisher · View at Google Scholar
  13. J. P. Overington, B. Al-Lazikani, and A. L. Hopkins, “How many drug targets are there?” Nature Reviews Drug Discovery, vol. 5, no. 12, pp. 993–996, 2006. View at Publisher · View at Google Scholar
  14. L. V. McFarland, “State-of-the-art of irritable bowel syndrome and inflammatory bowel disease research in 2008,” World Journal of Gastroenterology, vol. 14, no. 17, pp. 2625–2629, 2008. View at Publisher · View at Google Scholar
  15. P. L. Lakatos and L. Lakatos, “Risk for colorectal cancer in ulcerative colitis: changes, causes and management strategies,” World Journal of Gastroenterology, vol. 14, no. 25, pp. 3937–3947, 2008. View at Publisher · View at Google Scholar
  16. J. A. Read, S. T. B. Choy, P. J. Beale, and S. J. Clarke, “Evaluation of nutritional and inflammatory status of advanced colorectal cancer patients and its correlation with survival,” Nutrition and Cancer, vol. 55, no. 1, pp. 78–85, 2006. View at Publisher · View at Google Scholar
  17. K. Murphy, P. Travers, and M. Walport, Janeway's Immunobiology, Garland Science, Taylor & Francis, LLC, New York, NY, USA, 7th edition, 2008.
  18. K. Okamoto, K. Fukatsu, C. Ueno et al., “T lymphocyte numbers in human gut associated lymphoid tissue are reduced without enteral nutrition,” Journal of Parenteral and Enteral Nutrition, vol. 29, no. 1, pp. 56–58, 2005. View at Google Scholar
  19. S. E. Shoelson, J. Lee, and A. B. Goldfine, “Inflammation and insulin resistance,” The Journal of Clinical Investigation, vol. 116, no. 7, pp. 1793–1801, 2006. View at Publisher · View at Google Scholar
  20. B. B. Crohn, L. Ginzburg, and G. D. Oppenhaimer, “Regional ileitis, a pathologic and clinical entity,” The Journal of the American Medical Association, vol. 99, no. 6, pp. 1323–1329, 1932. View at Google Scholar
  21. J. Bassaganya-Riera, G. Ferrer, O. Casagran et al., “F4/80hiCCR2hi macrophage infiltration into the intra-abdominal fat worsens the severity of experimental IBD in obese mice with DSS colitis,” e-SPEN, vol. 4, no. 2, pp. e90–e97, 2009. View at Publisher · View at Google Scholar
  22. A. A. Moghaddam, M. Woodward, and R. Huxley, “Obesity and risk of colorectal cancer: a meta-analysis of 31 studies with 70,000 events,” Cancer Epidemiology Biomarkers & Prevention, vol. 16, no. 12, pp. 2533–2547, 2007. View at Publisher · View at Google Scholar
  23. L. Széles, D. Töröcsik, and L. Nagy, “PPARγ in immunity and inflammation: cell types and diseases,” Biochimica et Biophysica Acta, vol. 1771, no. 8, pp. 1014–1030, 2007. View at Publisher · View at Google Scholar
  24. P. Munkholm, “Review article: the incidence and prevalence of colorectal cancer in inflammatory bowel disease,” Alimentary Pharmacology & Therapeutics, vol. 18, supplement 2, pp. 1–5, 2003. View at Publisher · View at Google Scholar
  25. J.-Y. Blay, S. Negrier, V. Combaret et al., “Serum level of interleukin 6 as a prognosis factor in metastatic renal cell carcinoma,” Cancer Research, vol. 52, no. 12, pp. 3317–3322, 1992. View at Google Scholar
  26. P. Desreumaux and S. Ghosh, “Review article: mode of action and delivery of 5-aminosalicylic acid—new evidence,” Alimentary Pharmacology & Therapeutics, vol. 24, supplement 1, pp. 2–9, 2006. View at Publisher · View at Google Scholar
  27. L.-W. Chen, L. Egan, Z.-W. Li, F. R. Greten, M. F. Kagnoff, and M. Karin, “The two faces of IKK and NF-κB inhibition: prevention of systemic inflammation but increased local injury following intestinal ischemia-reperfusion,” Nature Medicine, vol. 9, no. 5, pp. 575–581, 2003. View at Publisher · View at Google Scholar
  28. W. E. Naugler and M. Karin, “NF-κB and cancer—identifying targets and mechanisms,” Current Opinion in Genetics & Development, vol. 18, no. 1, pp. 19–26, 2008. View at Publisher · View at Google Scholar
  29. S. Rakoff-Nahoum and R. Medzhitov, “Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88,” Science, vol. 317, no. 5834, pp. 124–127, 2007. View at Publisher · View at Google Scholar
  30. W. E. Naugler, T. Sakurai, S. Kim et al., “Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production,” Science, vol. 317, no. 5834, pp. 121–124, 2007. View at Publisher · View at Google Scholar
  31. F. Balkwill, “TNF-α in promotion and progression of cancer,” Cancer and Metastasis Reviews, vol. 25, no. 3, pp. 409–416, 2006. View at Publisher · View at Google Scholar
  32. F. R. Greten, L. Eckmann, T. F. Greten et al., “IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer,” Cell, vol. 118, no. 3, pp. 285–296, 2004. View at Publisher · View at Google Scholar
  33. B. K. Popivanova, K. Kitamura, Y. Wu et al., “Blocking TNF-α in mice reduces colorectal carcinogenesis associated with chronic colitis,” The Journal of Clinical Investigation, vol. 118, no. 2, pp. 560–570, 2008. View at Publisher · View at Google Scholar
  34. S. Kim, T. O. Keku, C. Martin et al., “Circulating levels of inflammatory cytokines and risk of colorectal adenomas,” Cancer Research, vol. 68, no. 1, pp. 323–328, 2008. View at Publisher · View at Google Scholar
  35. O. Warburg, “On the origin of cancer cells,” Science, vol. 123, no. 3191, pp. 309–314, 1956. View at Google Scholar
  36. H. Pelicano, D. Carney, and P. Huang, “ROS stress in cancer cells and therapeutic implications,” Drug Resistance Updates, vol. 7, no. 2, pp. 97–110, 2004. View at Publisher · View at Google Scholar
  37. A. Roessner, D. Kuester, P. Malfertheiner, and R. Schneider-Stock, “Oxidative stress in ulcerative colitis-associated carcinogenesis,” Pathology Research and Practice, vol. 204, no. 7, pp. 511–524, 2008. View at Publisher · View at Google Scholar
  38. E. A. Thompson, “PPARγ physiology and pathology in gastrointestinal epithelial cells,” Molecules and Cells, vol. 24, no. 2, pp. 167–176, 2007. View at Google Scholar
  39. R. Kostadinova, W. Wahli, and L. Michalik, “PPARs in diseases: control mechanisms of inflammation,” Current Medicinal Chemistry, vol. 12, no. 25, pp. 2995–3009, 2005. View at Publisher · View at Google Scholar
  40. M. Lefebvre, B. Paulweber, L. Fajas et al., “Peroxisome proliferator-activated receptor gamma is induced during differentiation of colon epithelium cells,” Journal of Endocrinology, vol. 162, no. 3, pp. 331–340, 1999. View at Publisher · View at Google Scholar
  41. E. Saez, P. Tontonoz, M. C. Nelson et al., “Activators of the nuclear receptor PPARγ enhance colon polyp formation,” Nature Medicine, vol. 4, no. 9, pp. 1058–1061, 1998. View at Publisher · View at Google Scholar
  42. P. Sarraf, E. Mueller, W. M. Smith et al., “Loss-of-function mutations in PPARγ associated with human colon cancer,” Molecular Cell, vol. 3, no. 6, pp. 799–804, 1999. View at Publisher · View at Google Scholar
  43. I. A. Voutsadakis, “Peroxisome proliferator-activated receptor γ (PPARγ) and colorectal carcinogenesis,” Journal of Cancer Research and Clinical Oncology, vol. 133, no. 12, pp. 917–928, 2007. View at Publisher · View at Google Scholar
  44. H. P. Koeffler, “Peroxisome proliferator-activated receptor γ and cancers,” Clinical Cancer Research, vol. 9, no. 1, pp. 1–9, 2003. View at Google Scholar
  45. S. W. Chung, B. Y. Kang, S. H. Kim et al., “Oxidized low density lipoprotein inhibits interleukin-12 production in lipopolysaccharide-activated mouse macrophages via direct interactions between peroxisome proliferator-activated receptor-γ and nuclear factor-κB,” The Journal of Biological Chemistry, vol. 275, no. 42, pp. 32681–32687, 2000. View at Google Scholar
  46. D. Kelly, J. I. Campbell, T. P. King et al., “Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shutting of PPAR-γ and ReIA,” Nature Immunology, vol. 5, no. 1, pp. 104–112, 2004. View at Publisher · View at Google Scholar
  47. G. Pascual, A. L. Fong, S. Ogawa et al., “A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-γ,” Nature, vol. 437, no. 7059, pp. 759–763, 2005. View at Publisher · View at Google Scholar
  48. C. Jennewein, A. M. Kuhn, M. V. Schmidt et al., “Sumoylation of peroxisome proliferator-activated receptor gamma by apoptotic cells prevents lipopolysaccharide-induced NCoR removal from kappaB binding sites mediating transrepression of proinflammatory cytokines,” The Journal of Immunology, vol. 181, no. 8, pp. 5646–5652, 2008. View at Google Scholar
  49. C. G. Su, X. Wen, S. T. Bailey et al., “A novel therapy for colitis utilizing PPAR-γ ligands to inhibit the epithelial inflammatory response,” The Journal of Clinical Investigation, vol. 104, no. 4, pp. 383–389, 1999. View at Google Scholar
  50. R. Marion-Letellier, M. Butler, P. Déchelotte, R. J. Playford, and S. Ghosh, “Comparison of cytokine modulation by natural peroxisome proliferator-activated receptor γ ligands with synthetic ligands in intestinal-like Caco-2 cells and human dendritic cells—potential for dietary modulation of peroxisome proliferator-activated receptor γ in intestinal inflammation,” American Journal of Clinical Nutrition, vol. 87, no. 4, pp. 939–948, 2008. View at Google Scholar
  51. J. D. Ramakers, M. I. Verstege, G. Thuijls, A. A. Te Velde, R. P. Mensink, and J. Plat, “The PPARγ agonist rosiglitazone impairs colonic inflammation in mice with experimental colitis,” Journal of Clinical Immunology, vol. 27, no. 3, pp. 275–283, 2007. View at Publisher · View at Google Scholar
  52. M. Kato, T. Kusumi, S. Tsuchida, M. Tanaka, M. Sasaki, and H. Kudo, “Induction of differentiation and peroxisome proliferator-activated receptor γ expression in colon cancer cell lines by troglitazone,” Journal of Cancer Research and Clinical Oncology, vol. 130, no. 2, pp. 73–79, 2004. View at Publisher · View at Google Scholar
  53. S. Drori, G. D. Girnun, L. Tou et al., “Hic-5 regulates an epithelial program mediated by PPARγ,” Genes & Development, vol. 19, no. 3, pp. 362–375, 2005. View at Publisher · View at Google Scholar
  54. C. J. Lee, J. S. Han, C. Y. Seo et al., “Pioglitazone, a synthetic ligand for PPARγ, induces apoptosis in RB-deficient human colorectal cancer cells,” Apoptosis, vol. 11, no. 3, pp. 401–411, 2006. View at Publisher · View at Google Scholar
  55. W. K. Leung, A. Bai, V. Y. W. Chan et al., “Effect of peroxisome proliferator activated receptor γ ligands on growth and gene expression profiles of gastric cancer cells,” Gut, vol. 53, no. 3, pp. 331–338, 2004. View at Publisher · View at Google Scholar
  56. A. Cerbone, C. Toaldo, S. Laurora et al., “4-Hydroxynonenal and PPARγ ligands affect proliferation, differentiation, and apoptosis in colon cancer cells,” Free Radical Biology and Medicine, vol. 42, no. 11, pp. 1661–1670, 2007. View at Publisher · View at Google Scholar
  57. M. S. Lin, W. C. Chen, X. Bai, and Y. D. Wang, “Activation of peroxisome proliferator-activated receptor γ inhibits cell growth via apoptosis and arrest of the cell cycle in human colorectal cancer,” Journal of Digestive Diseases, vol. 8, no. 2, pp. 82–88, 2007. View at Publisher · View at Google Scholar
  58. G. G. Chen, J. F. Lee, S. H. Wang, U. P. F. Chan, P. C. Ip, and W. Y. Lau, “Apoptosis induced by activation of peroxisome-proliferator activated receptor-gamma is associated with Bcl-2 and Nf-kB in human colon cancer,” Life Sciences, vol. 70, no. 22, pp. 2631–2646, 2002. View at Publisher · View at Google Scholar
  59. S. Duessel, R. M. Heuertz, and U. R. Ezekiel, “Growth inhibition of human colon cancer cells by plant compounds,” Clinical Laboratory Science, vol. 21, no. 3, pp. 151–157, 2008. View at Google Scholar
  60. J. A. Baur, K. J. Pearson, N. L. Price et al., “Resveratrol improves health and survival of mice on a high-calorie diet,” Nature, vol. 444, no. 7117, pp. 337–342, 2006. View at Publisher · View at Google Scholar
  61. A. Harari, D. Harats, D. Marko et al., “A 9-cisβ-carotene-enriched diet inhibits atherogenesis and fatty liver formation in LDL receptor knockout mice,” Journal of Nutrition, vol. 138, no. 10, pp. 1923–1930, 2008. View at Google Scholar
  62. B. E. Bachmeier, I. V. Mohrenz, V. Mirisola et al., “Curcumin downregulates the inflammatory cytokines CXCL1 and -2 in breast cancer cells via NFκB,” Carcinogenesis, vol. 29, no. 4, pp. 779–789, 2008. View at Publisher · View at Google Scholar
  63. H. Hatcher, R. Planalp, J. Cho, F. M. Torti, and S. V. Torti, “Curcumin: from ancient medicine to current clinical trials,” Cellular and Molecular Life Sciences, vol. 65, no. 11, pp. 1631–1652, 2008. View at Publisher · View at Google Scholar
  64. E. Jennings, “Folic acid as a cancer-preventing agent,” Medical Hypotheses, vol. 45, no. 3, pp. 297–303, 1995. View at Publisher · View at Google Scholar
  65. W. L. Stone, K. Krishnan, S. E. Campbell, M. Qui, S. G. Whaley, and H. Yang, “Tocopherols and the treatment of colon cancer,” Annals of the New York Academy of Sciences, vol. 1031, pp. 223–233, 2004. View at Publisher · View at Google Scholar
  66. N. Nieto, M. I. Fernandez, M. I. Torres, A. Ríos, M. D. Suarez, and A. Gil, “Dietary monounsaturated n-3 and n-6 long-chain polyunsaturated fatty acids affect cellular antioxidant defense system in rats with experimental ulcerative colitis induced by trinitrobenzene sulfonic acid,” Digestive Diseases and Sciences, vol. 43, no. 12, pp. 2676–2687, 1998. View at Publisher · View at Google Scholar
  67. A. G. Pittas, S. S. Harris, P. C. Stark, and B. Dawson-Hughes, “The effects of calcium and vitamin D supplementation on blood glucose and markers of inflammation in nondiabetic adults,” Diabetes Care, vol. 30, no. 4, pp. 980–986, 2007. View at Publisher · View at Google Scholar
  68. I. Chung, G. Han, M. Seshadri et al., “Role of vitamin D receptor in the antiproliferative effects of calcitriol in tumor-derived endothelial cells and tumor angiogenesis in vivo,” Cancer Research, vol. 69, no. 3, pp. 967–975, 2009. View at Publisher · View at Google Scholar
  69. A. Schatzkin, T. Mouw, Y. Park et al., “Dietary fiber and whole-grain consumption in relation to colorectal cancer in the NIH-AARP Diet and Health Study,” American Journal of Clinical Nutrition, vol. 85, no. 5, pp. 1353–1360, 2007. View at Google Scholar
  70. E. Lecona, J. I. Barrasa, N. Olmo, B. Llorente, J. Turnay, and M. A. Lizarbe, “Upregulation of annexin A1 expression by butyrate in human colon adenocarcinoma cells: role of p53, NF-Y, and p38 mitogen-activated protein kinase,” Molecular and Cellular Biology, vol. 28, no. 15, pp. 4665–4674, 2008. View at Publisher · View at Google Scholar
  71. M. Guslandi, G. Mezzi, M. Sorghi, and P. A. Testoni, “Saccharomyces boulardii in maintenance treatment of Crohn's disease,” Digestive Diseases and Sciences, vol. 45, no. 7, pp. 1462–1464, 2000. View at Publisher · View at Google Scholar
  72. C. I. Fotiadis, C. N. Stoidis, B. G. Spyropoulos, and E. D. Zografos, “Role of probiotics, prebiotics and synbiotics in chemoprevention for colorectal cancer,” World Journal of Gastroenterology, vol. 14, no. 42, pp. 6453–6457, 2008. View at Google Scholar
  73. M. Roller, Y. Clune, K. Collins, G. Rechkemmer, and B. Watzl, “Consumption of prebiotic inulin enriched with oligofructose in combination with the probiotics Lactobacillus rhamnosus and Bifidobacterium lactis has minor effects on selected immune parameters in polypectomised and colon cancer patients,” British Journal of Nutrition, vol. 97, no. 4, pp. 676–684, 2007. View at Publisher · View at Google Scholar
  74. A. Murakami, H. Ashida, and J. Terao, “Multitargeted cancer prevention by quercetin,” Cancer Letters, vol. 269, no. 2, pp. 315–325, 2008. View at Publisher · View at Google Scholar
  75. J. Bassaganya-Riera, K. Reynolds, S. Martino-Catt et al., “Activation of PPAR γ and Δ by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease,” Gastroenterology, vol. 127, no. 3, pp. 777–791, 2004. View at Publisher · View at Google Scholar
  76. C. Z. Wang, J. T. Xie, B. Zhang et al., “Chemopreventive effects of Panax notoginseng and its major constituents on SW480 human colorectal cancer cells,” International Journal of Oncology, vol. 31, no. 5, pp. 1149–1156, 2007. View at Google Scholar
  77. J. L. Funk, J. B. Frye, J. N. Oyarzo et al., “Efficacy and mechanism of action of turmeric supplements in the treatment of experimental arthritis,” Arthritis and Rheumatism, vol. 54, no. 11, pp. 3452–3464, 2006. View at Publisher · View at Google Scholar
  78. M. Cotterchio, B. A. Boucher, M. Manno, S. Gallinger, A. Okey, and P. Harper, “Dietary phytoestrogen intake is associated with reduced colorectal cancer risk,” Journal of Nutrition, vol. 136, no. 12, pp. 3046–3053, 2006. View at Google Scholar
  79. J. L. Slavin, “Mechanisms for the impact of whole grain foods on cancer risk,” Journal of the American College of Nutrition, vol. 19, supplement 3, pp. 300S–307S, 2000. View at Google Scholar
  80. T. Yoshida, M. Konishi, M. Horinaka et al., “Kaempferol sensitizes colon cancer cells to TRAIL-induced apoptosis,” Biochemical and Biophysical Research Communications, vol. 375, no. 1, pp. 129–133, 2008. View at Publisher · View at Google Scholar
  81. H. Raza and A. John, “In vitro effects of tea polyphenols on redox metabolism, oxidative stress, and apoptosis in PC12 cells,” Annals of the New York Academy of Sciences, vol. 1138, pp. 358–365, 2008. View at Publisher · View at Google Scholar
  82. G. Gordillo, H. Fang, S. Khanna, J. Harper, G. Phillips, and C. K. Sen, “Oral administration of blueberry inhibits angiogenic tumor growth and enhances survival of mice with endothelial cell neoplasm,” Antioxidants and Redox Signaling, vol. 11, no. 1, pp. 47–58, 2009. View at Publisher · View at Google Scholar
  83. I. J. Edwards and J. T. O'Flaherty, “Omega-3 fatty acids and PPARγ in cancer,” PPAR Research, vol. 2008, Article ID 358052, 14 pages, 2008. View at Publisher · View at Google Scholar
  84. C. H. Jakobsen, G. L. Storvold, H. Bremseth et al., “DHA induces ER stress and growth arrest in human colon cancer cells: associations with cholesterol and calcium homeostasis,” Journal of Lipid Research, vol. 49, no. 10, pp. 2089–2100, 2008. View at Google Scholar
  85. I. M. Berquin, I. J. Edwards, and Y. Q. Chen, “Multi-targeted therapy of cancer by omega-3 fatty acids,” Cancer Letters, vol. 269, no. 2, pp. 363–377, 2008. View at Publisher · View at Google Scholar
  86. J. Bassaganya-Riera and R. Hontecillas, “CLA and n-3 PUFA differentially modulate clinical activity and colonic PPAR-responsive gene expression in a pig model of experimental IBD,” Clinical Nutrition, vol. 25, no. 3, pp. 454–465, 2006. View at Publisher · View at Google Scholar
  87. S. Campbell, W. Stone, S. Whaley, and K. Krishnan, “Development of gamma (γ)-tocopherol as a colorectal cancer chemopreventive agent,” Critical Reviews in Oncology/Hematology, vol. 47, no. 3, pp. 249–259, 2003. View at Publisher · View at Google Scholar
  88. S. E. Campbell, W. L. Stone, S. G. Whaley, M. Qui, and K. Krishnan, “Gamma (γ) tocopherol upregulates peroxisome proliferator activated receptor (PPAR) gamma (γ) expression in SW 480 human colon cancer cell lines,” BMC Cancer, vol. 3, article 25, pp. 1–13, 2003. View at Publisher · View at Google Scholar
  89. G. Garcea, D. P. Berry, D. J. L. Jones et al., “Consumption of the putative chemopreventive agent curcumin by cancer patients: assessment of curcumin levels in the colorectum and their pharmacodynamic consequences,” Cancer Epidemiology Biomarkers & Prevention, vol. 14, no. 1, pp. 120–125, 2005. View at Google Scholar
  90. R. Béliveau and D. Gingras, “Role of nutrition in preventing cancer,” Canadian Family Physician, vol. 53, no. 11, pp. 1905–1911, 2007. View at Google Scholar
  91. S. M. Jackson, F. Parhami, X.-P. Xi et al., “Peroxisome proliferator-activated receptor activators target human endothelial cells to inhibit leukocyte-endothelial cell interaction,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 19, no. 9, pp. 2094–2104, 1999. View at Google Scholar
  92. C Blanquicett, J Roman, and C. M. Hart, “Thiazolidinediones as anti-cancer agents,” Cancer Therapy, vol. 6A, pp. 25–34, 2008. View at Google Scholar