Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2010, Article ID 169506, 12 pages
http://dx.doi.org/10.1155/2010/169506
Review Article

Molecular Mechanisms and Genome-Wide Aspects of PPAR Subtype Specific Transactivation

Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark

Received 8 April 2010; Accepted 27 June 2010

Academic Editor: Chih-Hao Lee

Copyright © 2010 Anne Bugge and Susanne Mandrup. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Issemann and S. Green, “Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators,” Nature, vol. 347, no. 6294, pp. 645–650, 1990. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. S. A. Kliewer, B. M. Forman, and B. M. Forman, “Differential expression and activation of a family of murine peroxisome proliferator-activated receptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 15, pp. 7355–7359, 1994. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Dreyer, G. Krey, H. Keller, F. Givel, G. Helftenbein, and W. Wahli, “Control of the peroxisomal β-oxidation pathway by a novel family of nuclear hormone receptors,” Cell, vol. 68, no. 5, pp. 879–887, 1992. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Escher and W. Wahli, “Peroxisome proliferator-activated receptors: insight into multiple cellular functions,” Mutation Research, vol. 448, no. 2, pp. 121–138, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Kersten, B. Desvergne, and W. Wahli, “Roles of PPARS in health and disease,” Nature, vol. 405, no. 6785, pp. 421–424, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. V. G. Keshamouni, S. Han, and J. Roman, “Peroxisome proliferator-activated receptors in lung cancer,” PPAR Research, vol. 2007, Article ID 90289, 10 pages, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. T. Gulick, S. Cresci, T. Caira, D. D. Moore, and D. P. Kelly, “The peroxisome proliferator-activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 23, pp. 11012–11016, 1994. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Kersten, J. Seydoux, J. M. Peters, F. J. Gonzalez, B. Desvergne, and W. Wahli, “Peroxisome proliferator-activated receptor α mediates the adaptive response to fasting,” Journal of Clinical Investigation, vol. 103, no. 11, pp. 1489–1498, 1999. View at Google Scholar · View at Scopus
  9. Y.-X. Wang, C.-H. Lee, S. Tiep, R. T. Yu, J. Ham, H. Kang, and R. M. Evans, “Peroxisome-proliferator-activated receptor δ activates fat metabolism to prevent obesity,” Cell, vol. 113, no. 2, pp. 159–170, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Mueller, S. Drori, and S. Drori, “Genetic analysis of adipogenesis through peroxisome proliferator-activated receptor γ isoforms,” Journal of Biological Chemistry, vol. 277, no. 44, pp. 41925–41930, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. R. Nielsen, L. Grøntved, H. G. Stunnenberg, and S. Mandrup, “Peroxisome proliferator-activated receptor subtype- and cell-type-specific activation of genomic target genes upon adenoviral transgene delivery,” Molecular and Cellular Biology, vol. 26, no. 15, pp. 5698–5714, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. S. W. Kim, S. J. Her, S. Y. Kim, and C. S. Shin, “Ectopic overexpression of adipogenic transcription factors induces transdifferentiation of MC3T3-E1 osteoblasts,” Biochemical and Biophysical Research Communications, vol. 327, no. 3, pp. 811–819, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. P. Tontonoz, E. Hu, and B. M. Spiegelman, “Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor,” Cell, vol. 79, no. 7, pp. 1147–1156, 1994. View at Google Scholar · View at Scopus
  14. P. Escher, O. Braissant, S. Basu-Modak, L. Michalik, W. Wahli, and B. Desvergne, “Rat PPARs: quantitative analysis in adult rat tissues and regulation in fasting and refeeding,” Endocrinology, vol. 142, no. 10, pp. 4195–4202, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Castillo, R. P. Brun, and R. P. Brun, “An adipogenic cofactor bound by the differentiation domain of PPARγ,” The EMBO Journal, vol. 18, no. 13, pp. 3676–3687, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. S. Hummasti and P. Tontonoz, “The peroxisome proliferator-activated receptor N-terminal domain controls isotype-selective gene expression and adipogenesis,” Molecular Endocrinology, vol. 20, no. 6, pp. 1261–1275, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. A. IJpenberg, E. Jeannin, W. Wahli, and B. Desvergne, “Polarity and specific sequence requirements of peroxisome proliferator-activated receptor (PPAR)/retinoid X receptor heterodimer binding to DNA. A functional analysis of the malic enzyme gene PPAR response element,” Journal of Biological Chemistry, vol. 272, no. 32, pp. 20108–20117, 1997. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Ravnskjaer, M. Boergesen, and M. Boergesen, “Peroxisome proliferator-activated receptor α (PPARα) potentiates, whereas PPARγ attenuates, glucose-stimulated insulin secretion in pancreatic β-cells,” Endocrinology, vol. 146, no. 8, pp. 3266–3276, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. R. P. Brun, P. Tontonoz, B. M. Forman, R. Ellis, J. Chen, R. M. Evans, and B. M. Spiegelman, “Differential activation of adipogenesis by multiple PPAR isoforms,” Genes and Development, vol. 10, no. 8, pp. 974–984, 1996. View at Google Scholar · View at Scopus
  20. S. Yu, K. Matsusue, and K. Matsusue, “Adipocyte-specific gene expression and adipogenic steatosis in the mouse liver due to peroxisome proliferator-activated receptor γ1 (PPARγ1) overexpression,” Journal of Biological Chemistry, vol. 278, no. 1, pp. 498–505, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. B. M. Forman, J. Chen, and R. M. Evans, “Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors α and δ,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 9, pp. 4312–4317, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Helledie, M. Antonius, and M. Antonius, “Lipid-binding proteins modulate ligand-dependent trans-activation by peroxisome proliferator-activated receptors and localize to the nucleus as well as the cytoplasm,” Journal of Lipid Research, vol. 41, no. 11, pp. 1740–1751, 2000. View at Google Scholar · View at Scopus
  23. A. Kassam, J. Hunter, R. A. Rachubinski, and J. P. Capone, “Subtype- and response element-dependent differences in transactivation by peroxisome proliferator-activated receptors α and γ,” Molecular and Cellular Endocrinology, vol. 141, no. 1-2, pp. 153–162, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Schoonjans, J. Peinado-Onsurbe, and J. Peinado-Onsurbe, “PPARα and PPARγ activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene,” The EMBO Journal, vol. 15, no. 19, pp. 5336–5348, 1996. View at Google Scholar · View at Scopus
  25. C. Juge-Aubry, A. Pernin, T. Favez, A. G. Burger, W. Wahli, C. A. Meier, and B. Desvergne, “DNA binding properties of peroxisome proliferator-activated receptor subtypes on various natural peroxisome proliferator response elements: importance of the 5-flanking region,” Journal of Biological Chemistry, vol. 272, no. 40, pp. 25252–25259, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. V. Chandra, P. Huang, Y. Hamuro, S. Raghuram, Y. Wang, T. P. Burris, and F. Rastinejad, “Structure of the intact PPAR-γ-RXR-α nuclear receptor complex on DNA,” Nature, vol. 456, no. 7220, pp. 350–356, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. D. Shao, S. M. Rangwala, S. T. Bailey, S. L. Krakow, M. J. Reginato, and M. A. Lazar, “Interdomain communication regulating ligand binding by PPAR-γ,” Nature, vol. 396, no. 6709, pp. 377–380, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. S. S. Deeb, L. Fajas, and L. Fajas, “A Pro12Ala substitution in PPARγ2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity,” Nature Genetics, vol. 20, no. 3, pp. 284–287, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. R. T. Nolte, G. B. Wisely, and G. B. Wisely, “Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ,” Nature, vol. 395, no. 6698, pp. 137–143, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. H. E. Xu, M. H. Lambert, and M. H. Lambert, “Structural determinants of ligand binding selectivity between the peroxisome proliferator-activated receptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 24, pp. 13919–13924, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. H. E. Xu, M. H. Lambert, and M. H. Lambert, “Molecular recognition of fatty acids by peroxisome proliferator-activated receptors,” Molecular Cell, vol. 3, no. 3, pp. 397–403, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Blanquart, O. Barbier, J.-C. Fruchart, B. Staels, and C. Glineur, “Peroxisome proliferator-activated receptor α (PPARα) turnover by the ubiquitin-proteasome system controls the ligand-induced expression level of its target genes,” Journal of Biological Chemistry, vol. 277, no. 40, pp. 37254–37259, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. S. Hauser, G. Adelmant, P. Sarraf, H. M. Wright, E. Mueller, and B. M. Spiegelman, “Degradation of the peroxisome proliferator-activated receptor γ is linked to ligand-dependent activation,” Journal of Biological Chemistry, vol. 275, no. 24, pp. 18527–18533, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. M. G. Rosenfeld and C. K. Glass, “Coregulator codes of transcriptional regulation by nuclear receptors,” Journal of Biological Chemistry, vol. 276, no. 40, pp. 36865–36868, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. C. Jørgensen, A.-M. Krogsdam, I. Kratchmarova, T. M. Willson, J. Knudsen, S. Mandrup, and K. Kristiansen, “Opposing effects of fatty acids and acyl-CoA esters on conformation and cofactor recruitment of peroxisome proliferator-activated receptors,” Annals of the New York Academy of Sciences, vol. 967, pp. 431–439, 2002. View at Google Scholar · View at Scopus
  36. T. B. Stanley, L. M. Leesnitzer, and L. M. Leesnitzer, “Subtype specific effects of peroxisome proliferator-activated receptor ligands on corepressor affinity,” Biochemistry, vol. 42, no. 31, pp. 9278–9287, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. A. Koppen, R. Houtman, D. Pijnenburg, E. H. Jeninga, R. Ruijtenbeek, and E. Kalkhoven, “Nuclear receptor-coregulator interaction profiling identifies TRIP3 as a novel peroxisome proliferator-activated receptor γ cofactor,” Molecular and Cellular Proteomics, vol. 8, no. 10, pp. 2212–2226, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. H. Oberkofler, H. Esterbauer, V. Linnemayr, A. D. Strosberg, F. Krempler, and W. Patsch, “Peroxisome proliferator-activated receptor (PPAR) γ coactivator-1 recruitment regulates PPAR subtype specificity,” Journal of Biological Chemistry, vol. 277, no. 19, pp. 16750–16757, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. A. Wärnmark, E. Treuter, A. P. H. Wright, and J.-Å. Gustafsson, “Activation functions 1 and 2 of nuclear receptors: molecular strategies for transcriptional activation,” Molecular Endocrinology, vol. 17, no. 10, pp. 1901–1909, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. X. Hu and M. A. Lazar, “The CoRNR motif controls the recruitment of compressors by nuclear hormone receptors,” Nature, vol. 402, no. 6757, pp. 93–96, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. J. Berger, H. V. Patel, and H. V. Patel, “A PPARγ mutant serves as a dominant negative inhibitor of PPAR signaling and is localized in the nucleus,” Molecular and Cellular Endocrinology, vol. 162, no. 1-2, pp. 57–67, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Masugi, Y. Tamori, and M. Kasuga, “Inhibition of adipogenesis by a COOH-terminally truncated mutant of PPARγ2 in 3T3-L1 cells,” Biochemical and Biophysical Research Communications, vol. 264, no. 1, pp. 93–99, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. C. J. Walkey and B. M. Spiegelman, “A functional peroxisome proliferator-activated receptor-γ ligand-binding domain is not required for adipogenesis,” Journal of Biological Chemistry, vol. 283, no. 36, pp. 24290–24294, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. C. Tudor, J. N. Feige, and J. N. Feige, “Association with coregulators is the major determinant governing peroxisome proliferator-activated receptor mobility in living cells,” Journal of Biological Chemistry, vol. 282, no. 7, pp. 4417–4426, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. F. Molnár, M. Matilainen, and C. Carlberg, “Structural determinants of the agonist-independent association of human peroxisome proliferator-activated receptors with coactivators,” Journal of Biological Chemistry, vol. 280, no. 28, pp. 26543–26556, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. A. Bugge, L. Grøntved, M. M. Aagaard, R. Borup, and S. Mandrup, “The PPARγ2 A/B-domain plays a gene-specific role in transactivation and cofactor recruitment,” Molecular Endocrinology, vol. 23, no. 6, pp. 794–808, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. K. Dahlman-Wright, H. Baumann, I. J. McEwan, T. Almlöf, A. P. H. Wright, J.-Å. Gustafsson, and T. Härd, “Structural characterization of a minimal functional transactivation domain from the human glucocorticoid receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 5, pp. 1699–1703, 1995. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Wärnmark, A. Wikström, A. P. H. Wright, J.-Å. Gustafsson, and T. Härd, “The N-terminal regions of estrogen receptor α and β are unstructured in vitro and show different TBP binding properties,” Journal of Biological Chemistry, vol. 276, no. 49, pp. 45939–45944, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. M. Birnbaumer, W. T. Schrader, and B. W. O'Malley, “Assessment of structural similarities in chick oviduct progesterone receptor subunits by partial proteolysis of photoaffinity-labeled proteins,” Journal of Biological Chemistry, vol. 258, no. 12, pp. 7331–7337, 1983. View at Google Scholar · View at Scopus
  50. D. L. Bain, M. A. Franden, J. L. McManaman, G. S. Takimoto, and K. B. Horwitz, “The N-terminal region of the human progesterone A-receptor. Structural analysis and the influence of the DNA binding domain,” Journal of Biological Chemistry, vol. 275, no. 10, pp. 7313–7320, 2000. View at Publisher · View at Google Scholar · View at Scopus
  51. R. Hi, S. Osada, N. Yumoto, and T. Osumi, “Characterization of the amino-terminal activation domain of peroxisome proliferator-activated receptor α. Importance of α-helical structure in the transactivating function,” Journal of Biological Chemistry, vol. 274, no. 49, pp. 35152–35158, 1999. View at Publisher · View at Google Scholar · View at Scopus
  52. T. Almlöf, J.-Å. Gustafsson, and A. P. H. Wright, “Role of hydrophobic amino acid clusters in the transactivation activity of the human glucocorticoid receptor,” Molecular and Cellular Biology, vol. 17, no. 2, pp. 934–945, 1997. View at Google Scholar · View at Scopus
  53. T. Almlof, A. P. H. Wright, and J.-A. Gustafsson, “Role of acidic and phosphorylated residues in gene activation by the glucocorticoid receptor,” Journal of Biological Chemistry, vol. 270, no. 29, pp. 17535–17540, 1995. View at Publisher · View at Google Scholar · View at Scopus
  54. E. Kistanova, H. Dell, P. Tsantili, E. Falvey, C. Cladaras, and M. Hadzopoulou-Cladaras, “The activation function-1 of hepatocyte nuclear factor-4 is an acidic activator that mediates interactions through bulky hydrophobic residues,” Biochemical Journal, vol. 356, no. 2, pp. 635–642, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. A. M.S. Garza, S. H. Khan, and R. Kumar, “Site-specific phosphorylation induces functionally active conformation in the intrinsically disordered N-terminal activation function (AF1) domain of the glucocorticoid receptor,” Molecular and Cellular Biology, vol. 30, no. 1, pp. 220–230, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. S. Hermann, K. D. Berndt, and A. P. Wright, “How transcriptional activators bind target proteins,” Journal of Biological Chemistry, vol. 276, no. 43, pp. 40127–40132, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. C. E. Juge-Aubry, S. Kuenzli, J.-C. Sanchez, D. Hochstrasser, and C. A. Meier, “Peroxisomal bifunctional enzyme binds and activates the activation function-1 region of the peroxisome proliferator-activated receptor α,” Biochemical Journal, vol. 353, no. 2, pp. 253–258, 2001. View at Publisher · View at Google Scholar
  58. M.-B. Debril, L. Gelman, E. Fayard, J.-S. Annicotte, S. Rocchi, and J. Auwerx, “Transcription factors and nuclear receptors interact with the SWI/SNF complex through the BAF60c subunit,” Journal of Biological Chemistry, vol. 279, no. 16, pp. 16677–16686, 2004. View at Publisher · View at Google Scholar · View at PubMed
  59. N. Yadav, D. Cheng, S. Richard, M. Morel, V. R. Iyer, C. M. Aldaz, and M. T. Bedford, “CARM1 promotes adipocyte differentiation by coactivating PPARγ,” EMBO Reports, vol. 9, no. 2, pp. 193–198, 2008. View at Publisher · View at Google Scholar · View at PubMed
  60. D. Li, Q. Kang, and D.-M. Wang, “Constitutive coactivator of peroxisome proliferator-activated receptor (PPARγ), a novel coactivator of PPARγ that promotes adipogenesis,” Molecular Endocrinology, vol. 21, no. 10, pp. 2320–2333, 2007. View at Publisher · View at Google Scholar · View at PubMed
  61. L. Gelman, G. Zhou, L. Fajas, E. Raspé, J.-C. Fruchart, and J. Auwerx, “p300 Interacts with the N- and C-terminal part of PPARγ2 in a ligand-independent and -dependent manner, respectively,” Journal of Biological Chemistry, vol. 274, no. 12, pp. 7681–7688, 1999. View at Publisher · View at Google Scholar
  62. S. Drori, G. D. Girnun, and G. D. Girnun, “Hic-5 regulates an epithelial program mediated by PPARγ,” Genes and Development, vol. 19, no. 3, pp. 362–375, 2005. View at Publisher · View at Google Scholar · View at PubMed
  63. S. C. Schock, J. Xu, and J. Xu, “Rescue of neurons from ischemic injury by peroxisome proliferator-activated receptor-γ requires a novel essential cofactor LMO4,” Journal of Neuroscience, vol. 28, no. 47, pp. 12433–12444, 2008. View at Publisher · View at Google Scholar · View at PubMed
  64. B. N. Finck, M. C. Gropler, and M. C. Gropler, “Lipin 1 is an inducible amplifier of the hepatic PGC-1α/PPARα regulatory pathway,” Cell Metabolism, vol. 4, no. 3, pp. 199–210, 2006. View at Publisher · View at Google Scholar · View at PubMed
  65. Y. Zhu, C. Qi, S. Jain, M. S. Rao, and J. K. Reddy, “Isolation and characterization of PBP, a protein that interacts with peroxisome proliferator-activated receptor,” Journal of Biological Chemistry, vol. 272, no. 41, pp. 25500–25506, 1997. View at Publisher · View at Google Scholar
  66. L. Grøntved, M. S. Madsen, M. Boergesen, R. G. Roeder, and S. Mandrup, “MED14 tethers mediator to the N-terminal domain of peroxisome proliferator-activated receptor γ and is required for full transcriptional activity and adipogenesis,” Molecular and Cellular Biology, vol. 30, no. 9, pp. 2155–2169, 2010. View at Publisher · View at Google Scholar · View at PubMed
  67. K. M. A. Dreijerink, R. A. Varier, and R. A. Varier, “The multiple endocrine neoplasia type 1 (MEN1) tumor suppressor regulates peroxisome proliferator-activated receptor γ-dependent adipocyte differentiation,” Molecular and Cellular Biology, vol. 29, no. 18, pp. 5060–5069, 2009. View at Publisher · View at Google Scholar · View at PubMed
  68. C. Brendel, L. Gelman, and J. Auwerx, “Multiprotein bridging factor-1 (MBF-1) is a cofactor for nuclear receptors that regulate lipid metabolism,” Molecular Endocrinology, vol. 16, no. 6, pp. 1367–1377, 2002. View at Publisher · View at Google Scholar
  69. L. Gopinathan, D. B. Hannon, J. M. Peters, and J. P. Vanden Heuvel, “Regulation of peroxisome proliferator-activated receptor-α by MDM2,” Toxicological Sciences, vol. 108, no. 1, pp. 48–58, 2009. View at Publisher · View at Google Scholar · View at PubMed
  70. P. Bai, S. M. Houten, and S. M. Houten, “Peroxisome proliferator-activated receptor (PPAR)-2 controls adipocyte differentiation and adipose tissue function through the regulation of the activity of the retinoid X receptor/PPARγ heterodimer,” Journal of Biological Chemistry, vol. 282, no. 52, pp. 37738–37746, 2007. View at Publisher · View at Google Scholar · View at PubMed
  71. I. Iankova, R. K. Petersen, and R. K. Petersen, “Peroxisome proliferator-activated receptor γ recruits the positive transcription elongation factor b complex to activate transcription and promote adipogenesis,” Molecular Endocrinology, vol. 20, no. 7, pp. 1494–1505, 2006. View at Publisher · View at Google Scholar · View at PubMed
  72. S. Surapureddi, S. Yu, and S. Yu, “Identification of a transcriptionally active peroxisome proliferator-activated receptor α-interacting cofactor complex in rat liver and characterization of PRIC285 as a coactivator,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 18, pp. 11836–11841, 2002. View at Publisher · View at Google Scholar · View at PubMed
  73. T. Tomaru, T. Satoh, and T. Satoh, “Isolation and characterization of a transcriptional cofactor and its novel isoform that bind the deoxyribonucleic acid-binding domain of peroxisome proliferator-activated receptor-γ,” Endocrinology, vol. 147, no. 1, pp. 377–388, 2006. View at Publisher · View at Google Scholar · View at PubMed
  74. S. Surapureddi, N. Viswakarma, S. Yu, D. Guo, M. S. Rao, and J. K. Reddy, “PRIC320, a transcription coactivator, isolated from peroxisome proliferator-binding protein complex,” Biochemical and Biophysical Research Communications, vol. 343, no. 2, pp. 535–543, 2006. View at Publisher · View at Google Scholar · View at PubMed
  75. Y. Zhu, L. Kan, C. Qi, Y. S. Kanwar, A. V. Yeldandi, M. S. Rao, and J. K. Reddy, “Isolation and characterization of peroxisome proliferator-activated receptor (PPAR) interacting protein (PRIP) as a coactivator for PPAR,” Journal of Biological Chemistry, vol. 275, no. 18, pp. 13510–13516, 2000. View at Publisher · View at Google Scholar
  76. P. Puigserver, Z. Wu, C. W. Park, R. Graves, M. Wright, and B. M. Spiegelman, “A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis,” Cell, vol. 92, no. 6, pp. 829–839, 1998. View at Publisher · View at Google Scholar
  77. P. Seale, B. Bjork, and B. Bjork, “PRDM16 controls a brown fat/skeletal muscle switch,” Nature, vol. 454, no. 7207, pp. 961–967, 2008. View at Publisher · View at Google Scholar · View at PubMed
  78. Y. Zhu, C. Qi, W.-Q. Cao, A. V. Yeldandi, M. S. Rao, and J. K. Reddy, “Cloning and characterization of PIMT, a protein with a methyltransferase domain, which interacts with and enhances nuclear receptor coactivator PRIP function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 18, pp. 10380–10385, 2001. View at Publisher · View at Google Scholar · View at PubMed
  79. C. Qi, J. Chang, Y. Zhu, A. V. Yeldandi, S. M. Rao, and Y.-J. Zhu, “Identification of protein arginine methyltransferase 2 as a coactivator for estrogen receptor α,” Journal of Biological Chemistry, vol. 277, no. 32, pp. 28624–28630, 2002. View at Publisher · View at Google Scholar · View at PubMed
  80. Y. Zhu, C. Qi, C. Calandra, M. S. Rao, and J. K. Reddy, “Cloning and identification of mouse steroid receptor coactivator-1 (mSRC-1), as a coactivator of peroxisome proliferator-activated receptor gamma,” Gene Expression, vol. 6, no. 3, pp. 185–195, 1996. View at Google Scholar
  81. H. Li, P. J. Gomes, and J. D. Chen, “RAC3, a steroid/nuclear receptor-associated coactivator that is related to SRC-1 and TIF2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 16, pp. 8479–8484, 1997. View at Publisher · View at Google Scholar
  82. O. van Beekum, A. B. Brenkman, and A. B. Brenkman, “The adipogenic acetyltransferase Tip60 targets activation function 1 of peroxisome proliferator-activated receptor γ,” Endocrinology, vol. 149, no. 4, pp. 1840–1849, 2008. View at Publisher · View at Google Scholar · View at PubMed
  83. A. Koppen, R. Houtman, D. Pijnenburg, E. H. Jeninga, R. Ruijtenbeek, and E. Kalkhoven, “Nuclear receptor-coregulator interaction profiling identifies TRIP3 as a novel peroxisome proliferator-activated receptor γ cofactor,” Molecular and Cellular Proteomics, vol. 8, no. 10, pp. 2212–2226, 2009. View at Publisher · View at Google Scholar · View at PubMed
  84. E. J. Yoo, J. J. Chung, S. S. Choe, K. H. Kim, and J. B. Kim, “Down-regulation of histone deacetylases stimulates adipocyte differentiation,” Journal of Biological Chemistry, vol. 281, no. 10, pp. 6608–6615, 2006. View at Publisher · View at Google Scholar · View at PubMed
  85. S. K. Knutson, B. J. Chyla, J. M. Amann, S. Bhaskara, S. S. Huppert, and S. W. Hiebert, “Liver-specific deletion of histone deacetylase 3 disrupts metabolic transcriptional networks,” The EMBO Journal, vol. 27, no. 7, pp. 1017–1028, 2008. View at Publisher · View at Google Scholar · View at PubMed
  86. R. L. Montgomery, M. J. Potthoff, and M. J. Potthoff, “Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice,” Journal of Clinical Investigation, vol. 118, no. 11, pp. 3588–3597, 2008. View at Publisher · View at Google Scholar · View at PubMed
  87. S. S. Y. Chan, L. J. Schedlich, S. M. Twigg, and R. C. Baxter, “Inhibition of adipocyte differentiation by insulin-like growth factor-binding protein-3,” American Journal of Physiology, vol. 296, no. 4, pp. E654–E663, 2009. View at Publisher · View at Google Scholar · View at PubMed
  88. J. Direnzo, M. Söderström, and M. Söderström, “Peroxisome proliferator-activated receptors and retinoic acid receptors differentially control the interactions of retinoid X receptor heterodimers with ligands, coactivators, and corepressors,” Molecular and Cellular Biology, vol. 17, no. 4, pp. 2166–2176, 1997. View at Google Scholar
  89. E. Treuter, T. Albrektsen, L. Johansson, J. Leers, and J.-A. Gustafsson, “A regulatory role for RIP140 in nuclear receptor activation,” Molecular Endocrinology, vol. 12, no. 6, pp. 864–881, 1998. View at Google Scholar
  90. M.-B. Debril, L. Dubuquoy, J.-N. Feige, W. Wahli, B. Desvergne, J. Auwerx, and L. Gelman, “Scaffold attachment factor B1 directly interacts with nuclear receptors in living cells and represses transcriptional activity,” Journal of Molecular Endocrinology, vol. 35, no. 3, pp. 503–517, 2005. View at Publisher · View at Google Scholar · View at PubMed
  91. F. Picard, M. Kurtev, and M. Kurtev, “Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ,” Nature, vol. 429, no. 6993, pp. 771–776, 2004. View at Publisher · View at Google Scholar · View at PubMed
  92. Y. Takahashi, N. Ohoka, H. Hayashi, and R. Sato, “TRB3 suppresses adipocyte differentiation by negatively regulating PPARγ transcriptional activity,” Journal of Lipid Research, vol. 49, no. 4, pp. 880–892, 2008. View at Publisher · View at Google Scholar · View at PubMed
  93. K. A. Burns and J. P. Vanden Heuvel, “Modulation of PPAR activity via phosphorylation,” Biochimica et Biophysica Acta, vol. 1771, no. 8, pp. 952–960, 2007. View at Publisher · View at Google Scholar · View at PubMed
  94. M. Adams, M. J. Reginato, D. Shao, M. A. Lazar, and V. K. Chatterjee, “Transcriptional activation by peroxisome proliferator-activated receptor γ is inhibited by phosphorylation at a consensus mitogen-activated protein kinase site,” Journal of Biological Chemistry, vol. 272, no. 8, pp. 5128–5132, 1997. View at Publisher · View at Google Scholar
  95. Y. Fujimoto, T. Shiraki, and T. Shiraki, “Proline cis/trans-isomerase Pin1 regulates peroxisome proliferator-activated receptor γ activity through the direct binding to the activation function-1 domain,” Journal of Biological Chemistry, vol. 285, no. 5, pp. 3126–3132, 2010. View at Publisher · View at Google Scholar · View at PubMed
  96. B. Zhang, J. Berger, and J. Berger, “Insulin- and mitogen-activated protein kinase-mediated phosphorylation and activation of peroxisome proliferator-activated receptor γ,” Journal of Biological Chemistry, vol. 271, no. 50, pp. 31771–31774, 1996. View at Publisher · View at Google Scholar
  97. S. M. Rangwala, B. Rhoades, and B. Rhoades, “Genetic modulation of PPARγ phosphorylation regulates insulin sensitivity,” Developmental Cell, vol. 5, no. 4, pp. 657–663, 2003. View at Publisher · View at Google Scholar
  98. M. Ristow, D. Müller-Wieland, A. Pfeiffer, W. Krone, and C. R. Kahn, “Obesity associated with a mutation in a genetic regulator of adipocyte differentiation,” The New England Journal of Medicine, vol. 339, no. 14, pp. 953–959, 1998. View at Publisher · View at Google Scholar
  99. E. Burgermeister, D. Chuderland, T. Hanoch, M. Meyer, M. Liscovitch, and R. Seger, “Interaction with MEK causes nuclear export and downregulation of peroxisome proliferator-activated receptor γ,” Molecular and Cellular Biology, vol. 27, no. 3, pp. 803–817, 2007. View at Publisher · View at Google Scholar · View at PubMed
  100. A. von Knethen, N. Tzieply, C. Jennewein, and B. Brüne, “Casein-kinase-II-dependent phosphorylation of PPARγ provokes CRM1-mediated shuttling of PPARγ from the nucleus to the cytosol,” Journal of Cell Science, vol. 123, no. 2, pp. 192–201, 2010. View at Publisher · View at Google Scholar · View at PubMed
  101. D. Yamashita, T. Yamaguchi, M. Shimizu, N. Nakata, F. Hirose, and T. Osumi, “The transactivating function of peroxisome proliferator-activated receptor γ is negatively regulated by SUMO conjugation in the amino-terminal domain,” Genes to Cells, vol. 9, no. 11, pp. 1017–1029, 2004. View at Publisher · View at Google Scholar · View at PubMed
  102. L. Grøntved, M. S. Madsen, M. Boergesen, R. G. Roeder, and S. Mandrup, “MED14 tethers mediator to the N-terminal domain of peroxisome proliferator-activated receptor γ and is required for full transcriptional activity and adipogenesis,” Molecular and Cellular Biology, vol. 30, no. 9, pp. 2155–2169, 2010. View at Publisher · View at Google Scholar · View at PubMed
  103. M.-H. Hsu, C. N. A. Palmer, W. Song, K. J. Griffin, and E. F. Johnson, “A carboxyl-terminal extension of the zinc finger domain contributes to the specificity and polarity of peroxisome proliferator-activated receptor DNA binding,” Journal of Biological Chemistry, vol. 273, no. 43, pp. 27988–27997, 1998. View at Publisher · View at Google Scholar
  104. C.-H. Lee, P. Olson, and P. Olson, “PPARδ regulates glucose metabolism and insulin sensitivity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 9, pp. 3444–3449, 2006. View at Publisher · View at Google Scholar · View at PubMed
  105. T. Tanaka, J. Yamamoto, and J. Yamamoto, “Activation of peroxisome proliferator-activated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 26, pp. 15924–15929, 2003. View at Publisher · View at Google Scholar · View at PubMed
  106. L. M. Sanderson, M. V. Boekschoten, B. Desvergne, M. Müller, and S. Kersten, “Transcriptional profiling reveals divergent roles of PPARα and PPARβ/δ in regulation of gene expression in mouse liver,” Physiological Genomics, vol. 41, no. 1, pp. 42–52, 2010. View at Publisher · View at Google Scholar · View at PubMed
  107. S. P. Anderson, C. Dunn, and C. Dunn, “Overlapping transcriptional programs regulated by the nuclear receptors peroxisome proliferator-activated receptor α, retinoid X receptor, and liver X receptor in mouse liver,” Molecular Pharmacology, vol. 66, no. 6, pp. 1440–1452, 2004. View at Publisher · View at Google Scholar · View at PubMed
  108. J. P. Vanden Heuvel, D. Kreder, B. Belda, D. B. Hannon, C. A. Nugent, K. A. Burns, and M. J. Taylor, “Comprehensive analysis of gene expression in rat and human hepatoma cells exposed to the peroxisome proliferator WY14,643,” Toxicology and Applied Pharmacology, vol. 188, no. 3, pp. 185–198, 2003. View at Publisher · View at Google Scholar
  109. K. Yamazaki, J. Kuromitsu, and I. Tanaka, “Microarray analysis of gene expression changes in mouse liver induced by peroxisome proliferator-activated receptor α agonists,” Biochemical and Biophysical Research Communications, vol. 290, no. 3, pp. 1114–1122, 2002. View at Publisher · View at Google Scholar · View at PubMed
  110. N. F. Cariello, E. H. Romach, and E. H. Romach, “Gene expression profiling of the PPAR-alpha agonist ciprofibrate in the cynomolgus monkey liver,” Toxicological Sciences, vol. 88, no. 1, pp. 250–264, 2005. View at Publisher · View at Google Scholar · View at PubMed
  111. M. Bünger, H. M. van den Bosch, J. van der Meijde, S. Kersten, G. J. E. J. Hooiveld, and M. Müller, “Genome-wide analysis of PPARα activation in murine small intestine,” Physiological Genomics, vol. 30, no. 2, pp. 192–204, 2007. View at Publisher · View at Google Scholar · View at PubMed
  112. S. Kersten, S. Mandard, P. Escher, F. J. Gonzalez, S. Tafuri, B. Desvergne, and W. Wahli, “The peroxisome proliferator-activated receptor α regulates amino acid metabolism,” The FASEB Journal, vol. 15, no. 11, pp. 1971–1978, 2001. View at Publisher · View at Google Scholar · View at PubMed
  113. A. Okuno, H. Tamemoto, and H. Tamemoto, “Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats,” Journal of Clinical Investigation, vol. 101, no. 6, pp. 1354–1361, 1998. View at Google Scholar
  114. L. Chao, B. Marcus-Samuels, and B. Marcus-Samuels, “Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones,” Journal of Clinical Investigation, vol. 106, no. 10, pp. 1221–1228, 2000. View at Google Scholar
  115. T. Albrektsen, K. S. Frederiksen, W. E. Holmes, E. Boel, K. Taylor, and J. Fleckner, “Novel genes regulated by the insulin sensitizer rosiglitazone during adipocyte differentiation,” Diabetes, vol. 51, no. 4, pp. 1042–1051, 2002. View at Google Scholar
  116. D. L. Gerhold, F. Liu, and F. Liu, “Gene expression profile of adipocyte differentiation and its regulation by peroxisome proliferator-activated receptor-γ agonists,” Endocrinology, vol. 143, no. 6, pp. 2106–2118, 2002. View at Publisher · View at Google Scholar
  117. P. Wang, J. Renes, F. Bouwman, A. Bunschoten, E. Mariman, and J. Keijer, “Absence of an adipogenic effect of rosiglitazone on mature 3T3-L1 adipocytes: increase of lipid catabolism and reduction of adipokine expression,” Diabetologia, vol. 50, no. 3, pp. 654–665, 2007. View at Publisher · View at Google Scholar · View at PubMed
  118. C. P. Hodgkinson and S. Ye, “Microarray analysis of peroxisome proliferator-activated receptor γ-induced changes in gene expression in macrophages,” Biochemical and Biophysical Research Communications, vol. 308, no. 3, pp. 505–510, 2003. View at Publisher · View at Google Scholar
  119. R. A. Gupta, J. A. Brockman, P. Sarraf, T. M. Willson, and R. N. DuBois, “Target genes of peroxisome proliferator-activated receptor γ in colorectal cancer cells,” Journal of Biological Chemistry, vol. 276, no. 32, pp. 29681–29687, 2001. View at Publisher · View at Google Scholar · View at PubMed
  120. H. L. Keen, M. J. Ryan, and M. J. Ryan, “Gene expression profiling of potential PPARγ target genes in mouse aorta,” Physiological Genomics, vol. 18, pp. 33–42, 2004. View at Publisher · View at Google Scholar · View at PubMed
  121. I. Szatmari, D. Töröcsik, and D. Töröcsik, “PPARγ regulates the function of human dendritic cells primarily by altering lipid metabolism,” Blood, vol. 110, no. 9, pp. 3271–3280, 2007. View at Publisher · View at Google Scholar · View at PubMed
  122. P. Åkerblad, R. Månsson, and R. Månsson, “Gene expression analysis suggests that EBF-1 and PPARγ2 induce adipogenesis of NIH-3T3 cells with similar efficiency and kinetics,” Physiological Genomics, vol. 23, no. 2, pp. 206–216, 2005. View at Publisher · View at Google Scholar · View at PubMed
  123. J. S. Carroll, C. A. Meyer, and C. A. Meyer, “Genome-wide analysis of estrogen receptor binding sites,” Nature Genetics, vol. 38, no. 11, pp. 1289–1297, 2006. View at Publisher · View at Google Scholar · View at PubMed
  124. H. Gao, S. Fält, A. Sandelin, J.-Å. Gustafsson, and K. Dahlman-Wright, “Genome-wide identification of estrogen receptor α-binding sites in mouse liver,” Molecular Endocrinology, vol. 22, no. 1, pp. 10–22, 2008. View at Publisher · View at Google Scholar · View at PubMed
  125. A. M. Thomas, S. N. Hart, B. Kong, J. Fang, X.-B. Zhong, and G. L. Guo, “Genome-wide tissue-specific farnesoid X receptor binding in mouse liver and intestine,” Hepatology, vol. 51, no. 4, pp. 1410–1419, 2010. View at Publisher · View at Google Scholar · View at PubMed
  126. C.-A. Lim, F. Yao, and F. Yao, “Genome-wide mapping of RELA(p65) binding identifies E2F1 as a transcriptional activator recruited by NF-κB upon TLR4 activation,” Molecular Cell, vol. 27, no. 4, pp. 622–635, 2007. View at Publisher · View at Google Scholar · View at PubMed
  127. E. D. Wederell, M. Bilenky, and M. Bilenky, “Global analysis of in vivo Foxa2-binding sites in mouse adult liver using massively parallel sequencing,” Nucleic Acids Research, vol. 36, no. 14, pp. 4549–4564, 2008. View at Publisher · View at Google Scholar · View at PubMed
  128. S. Frietze, X. Lan, V. X. Jin, and P. J. Farnham, “Genomic targets of the KRAB and SCAN domain-containing zinc finger protein 263,” Journal of Biological Chemistry, vol. 285, no. 2, pp. 1393–1403, 2010. View at Publisher · View at Google Scholar · View at PubMed
  129. R. Nielsen, T. Å. Pedersen, and T. Å. Pedersen, “Genome-wide profiling of PPARγ:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis,” Genes and Development, vol. 22, no. 21, pp. 2953–2967, 2008. View at Publisher · View at Google Scholar · View at PubMed
  130. M. I. Lefterova, Y. Zhang, and Y. Zhang, “PPARγ and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale,” Genes and Development, vol. 22, no. 21, pp. 2941–2952, 2008. View at Publisher · View at Google Scholar · View at PubMed
  131. K.-I. Wakabayashi, M. Okamura, and M. Okamura, “The peroxisome proliferator-activated receptor γ/retinoid X receptor α heterodimer targets the histone modification enzyme PR-Set7/Setd8 gene and regulates adipogenesis through a positive feedback loop,” Molecular and Cellular Biology, vol. 29, no. 13, pp. 3544–3555, 2009. View at Publisher · View at Google Scholar · View at PubMed
  132. M. I. Lefterova, D. J. Steger, and D. J. Steger, “Cell-specific determinants of peroxisome proliferator-activated receptor γ function in adipocytes and macrophages,” Molecular and Cellular Biology, vol. 30, no. 9, pp. 2078–2089, 2010. View at Publisher · View at Google Scholar · View at PubMed
  133. M. S. Hamza, S. Pott, and S. Pott, “De-novo identification of PPARγ/RXR binding sites and direct targets during adipogenesis,” PLoS ONE, vol. 4, no. 3, article e4907, 2009. View at Publisher · View at Google Scholar · View at PubMed
  134. O. A. MacDougald and S. Mandrup, “Adipogenesis: forces that tip the scales,” Trends in Endocrinology and Metabolism, vol. 13, no. 1, pp. 5–11, 2002. View at Publisher · View at Google Scholar
  135. D. L. M. van der Meer, T. Degenhardt, and T. Degenhardt, “Profiling of promoter occupancy by PPARα in human hepatoma cells via ChIP-chip analysis,” Nucleic Acids Research, vol. 38, no. 9, pp. 2839–2850, 2010. View at Publisher · View at Google Scholar · View at PubMed