Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2010, Article ID 282896, 11 pages
http://dx.doi.org/10.1155/2010/282896
Research Article

Developmental Effects of Perfluorononanoic Acid in the Mouse Are Dependent on Peroxisome Proliferator-Activated Receptor-Alpha

1Toxicology Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA
2Research Core Unit, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA

Received 17 March 2010; Accepted 12 July 2010

Academic Editor: J. Corton

Copyright © 2010 Cynthia J. Wolf et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Perfluorononanoic acid (PFNA) is one of the perfluoroalkyl acids found in the environment and in tissues of humans and wildlife. Prenatal exposure to PFNA negatively impacts survival and development of mice and activates the mouse and human peroxisome proliferator-activated receptor-alpha (PPAR 𝛼 ). In the current study, we used PPAR 𝛼 knockout (KO) and 129S1/SvlmJ wild-type (WT) mice to investigate the role of PPAR 𝛼 in mediating PFNA-induced in vivo effects. Pregnant KO and WT mice were dosed orally with water (vehicle control: 10 ml/kg), 0.83, 1.1, 1.5, or 2 mg/kg PFNA on gestational days (GDs) 1–18 (day of sperm plug = GD 0). Maternal weight gain, implantation, litter size, and pup weight at birth were unaffected in either strain. PFNA exposure reduced the number of live pups at birth and survival of offspring to weaning in the 1.1 and 2 mg/kg groups in WT. Eye opening was delayed (mean delay 2 . 1 days) and pup weight at weaning was reduced in WT pups at 2 mg/kg. These developmental endpoints were not affected in the KO. Relative liver weight was increased in a dose-dependent manner in dams and pups of the WT strain at all dose levels but only slightly increased in the highest dose group in the KO strain. In summary, PFNA altered liver weight of dams and pups, pup survival, body weight, and development in the WT, while only inducing a slight increase in relative liver weight of dams and pups at 2 mg/kg in KO mice. These results suggest that PPAR 𝛼 is an essential mediator of PFNA-induced developmental toxicity in the mouse.