Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2010, Article ID 409168, 17 pages
http://dx.doi.org/10.1155/2010/409168
Review Article

PPARG: Gene Expression Regulation and Next-Generation Sequencing for Unsolved Issues

1Institute of Genetics and Biophysics “Adriano Buzzati-Traverso” (IGB), CNR, 80131 Naples, Italy
2“Centro Diagnostico San Ciro” (CDS), 80055 Portici (NA), Italy
3Department of General Pathology, 1st School of Medicine, Second University of Naples, 80138 Naples, Italy

Received 10 May 2010; Accepted 8 July 2010

Academic Editor: Chih-Hao Lee

Copyright © 2010 Valerio Costa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Perissi and M. G. Rosenfeld, “Controlling nuclear receptors: the circular logic of cofactor cycles,” Nature Reviews Molecular Cell Biology, vol. 6, no. 7, pp. 542–554, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. P. J. Farnham, “Insights from genomic profiling of transcription factors,” Nature Reviews Genetics, vol. 10, no. 9, pp. 605–616, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. D. J. Mangelsdorf, C. Thummel, M. Beato et al., “The nuclear receptor super-family: the second decade,” Cell, vol. 83, no. 6, pp. 835–839, 1995. View at Google Scholar · View at Scopus
  4. J. P. Renaud and D. Moras, “Structural studies on nuclear receptors,” Cellular and Molecular Life Sciences, vol. 57, no. 12, pp. 1748–1769, 2000. View at Google Scholar · View at Scopus
  5. J. Berger and D. E. Moller, “The mechanisms of action of PPARs,” Annual Review of Medicine, vol. 53, pp. 409–435, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Torchia, C. Glass, and M. G. Rosenfeld, “Co-activators and co-repressors in the integration of transcriptional responses,” Current Opinion in Cell Biology, vol. 10, no. 3, pp. 373–383, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Knouff and J. Auwerx, “Peroxisome proliferator-activated receptor-γ calls for activation in moderation: lessons from genetics and pharmacology,” Endocrine Reviews, vol. 25, no. 6, pp. 899–918, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. O. Braissant, F. Foufelle, C. Scotto, M. Dauça, and W. Wahli, “Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-α, -β, and -γ in the adult rat,” Endocrinology, vol. 137, no. 1, pp. 354–366, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Michalik and W. Wahli, “Peroxisome proliferator-activated receptors: three isotypes for a multitude of functions,” Current Opinion in Biotechnology, vol. 10, no. 6, pp. 564–570, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Sher, H.-F. Yi, O. W. McBride, and F. J. Gonzalez, “cDNA cloning, chromosomal mapping, and functional characterization of the human peroxisome proliferator activated receptor,” Biochemistry, vol. 32, no. 21, pp. 5598–5604, 1993. View at Google Scholar · View at Scopus
  11. T. Yoshikawa, Z. Brkanac, B. R. Dupont, G.-Q. Xing, R. J. Leach, and S. D. Detera-Wadleigh, “Assignment of the human nuclear hormone receptor, NUC1 (PPARD), to chromosome 6p21.1-p21.2,” Genomics, vol. 35, no. 3, pp. 637–638, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. G. A. Francis, E. Fayard, F. Picard, and J. Auwerx, “Nuclear receptors and the control of metabolism,” Annual Review of Physiology, vol. 65, pp. 261–311, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. A. IJpenberg, E. Jeannin, W. Wahli, and B. Desvergne, “Polarity and specific sequence requirements of peroxisome proliferator- activated receptor (PPAR)/retinoid X receptor heterodimer binding to DNA. A functional analysis of the malic enzyme gene PPAR response element,” Journal of Biological Chemistry, vol. 272, no. 32, pp. 20108–20117, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. E. D. Rosen, P. Sarraf, A. E. Troy et al., “PPARγ is required for the differentiation of adipose tissue in vivo and in vitro,” Molecular Cell, vol. 4, no. 4, pp. 611–617, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Zhou, K. M. Wilson, and J. D. Medh, “Genetic analysis of four novel peroxisome proliferator activated receptor-γ splice variants in monkey macrophages,” Biochemical and Biophysical Research Communications, vol. 293, no. 1, pp. 274–283, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. S. McClelland, R. Shrivastava, and J. D. Medh, “Regulation of translational efficiency by disparate 5-UTRs of PPARγ splice variants,” PPAR Research, vol. 2009, Article ID 193413, 8 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Zhu, C. Qi, J. R. Korenberg et al., “Structural organization of mouse peroxisome proliferator-activated receptor γ (mPPARγ) gene: alternative promoter use and different splicing yield two mPPARγ isoforms,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 17, pp. 7921–7925, 1995. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Fajas, D. Auboeuf, E. Raspé et al., “The organization, promoter analysis, and expression of the human PPARγ gene,” Journal of Biological Chemistry, vol. 272, no. 30, pp. 18779–18789, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Tontonoz, E. Hu, and B. M. Spiegelman, “Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor,” Cell, vol. 79, no. 7, pp. 1147–1156, 1994. View at Google Scholar · View at Scopus
  20. A. J. Vidal-Puig, R. V. Considine, M. Jimenez-Liñan et al., “Peroxisome proliferator-activated receptor gene expression in human tissues: effects of obesity, weight loss, and regulation by insulin and glucocorticoids,” Journal of Clinical Investigation, vol. 99, no. 10, pp. 2416–2422, 1997. View at Google Scholar · View at Scopus
  21. L. Sabatino, A. Casamassimi, G. Peluso et al., “A novel peroxisome proliferator-activated receptor γ isoform with dominant negative activity generated by alternative splicing,” Journal of Biological Chemistry, vol. 280, no. 28, pp. 26517–26525, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. H. J. Kim, I. S. Woo, E. S. Kang et al., “Identification of a truncated alternative splicing variant of human PPARγ1 that exhibits dominant negative activity,” Biochemical and Biophysical Research Communications, vol. 347, no. 3, pp. 698–706, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. V. Costa, A. Casamassimi, and A. Ciccodicola, “Nutritional genomics era: opportunities toward a genome-tailored nutritional regimen,” Journal of Nutritional Biochemistry, vol. 21, no. 6, pp. 457–467, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. N. J. McKenna and B. W. O'Malley, “Combinatorial control of gene expression by nuclear receptors and coregulators,” Cell, vol. 108, no. 4, pp. 465–474, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. S. A. Kliewer, S. S. Sundseth, S. A. Jones et al., “Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 9, pp. 4318–4323, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Chawla, Y. Barak, L. Nagy, D. Liao, P. Tontonoz, and R. M. Evans, “PPAR-γ dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation,” Nature Medicine, vol. 7, no. 1, pp. 48–52, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. V. Chandra, P. Huang, Y. Hamuro et al., “Structure of the intact PPAR-γ-RXR-α nuclear receptor complex on DNA,” Nature, vol. 456, no. 7220, pp. 350–356, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Nielsen, T. Å. Pedersen, D. Hagenbeek et al., “Genome-wide profiling of PPARγ:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis,” Genes and Development, vol. 22, no. 21, pp. 2953–2967, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Madsen, R. K. Petersen, M. B. Sørensen et al., “Adipocyte differentiation of 3T3-L1 preadipocytes is dependent on lipoxygenase activity during the initial stages of the differentiation process,” Biochemical Journal, vol. 375, no. 3, pp. 539–549, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. I. Tzameli, H. Fang, M. Ollero et al., “Regulated production of a peroxisome proliferator-activated receptor-γ ligand during an early phase of adipocyte differentiation in 3T3-L1 adipocytes,” Journal of Biological Chemistry, vol. 279, no. 34, pp. 36093–36102, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. M. I. Lefterova, D. J. Steger, D. Zhuo et al., “Cell-specific determinants of peroxisome proliferator-activated receptor γ function in adipocytes and macrophages,” Molecular and Cellular Biology, vol. 30, no. 9, pp. 2078–2089, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. F. J. Dilworth and P. Chambon, “Nuclear receptors coordinate the activities of chromatin remodeling complexes and coactivators to facilitate initiation of transcription,” Oncogene, vol. 20, no. 24, pp. 3047–3054, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Ho and G. R. Crabtree, “Chromatin remodelling during development,” Nature, vol. 463, no. 7280, pp. 474–484, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. B. D. Strahl and C. D. Allis, “The language of covalent histone modifications,” Nature, vol. 403, no. 6765, pp. 41–45, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Zhang and D. Reinberg, “Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails,” Genes and Development, vol. 15, no. 18, pp. 2343–2360, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. R. J. Sims III, K. Nishioka, and D. Reinberg, “Histone lysine methylation: a signature for chromatin function,” Trends in Genetics, vol. 19, no. 11, pp. 629–639, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Kouzarides, “Chromatin modifications and their function,” Cell, vol. 128, no. 4, pp. 693–705, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. E. Scotti and P. Tontonoz, “Peroxisome proliferator-activated receptor γ dances with different partners in macrophage and adipocytes,” Molecular and Cellular Biology, vol. 30, no. 9, pp. 2076–2077, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Ge, M. Guermah, C.-X. Yuan et al., “Transcription coactivator TRAP220 is required for PPARγ2-stimulated adipogenesis,” Nature, vol. 417, no. 6888, pp. 563–567, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. Zhu, C. Qi, S. Jain, M. S. Rao, and J. K. Reddy, “Isolation and characterization of PBP, a protein that interacts with peroxisome proliferator-activated receptor,” Journal of Biological Chemistry, vol. 272, no. 41, pp. 25500–25506, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. C. A. Heinlein, H.-J. Ting, S. Yeh, and C. Chang, “Identification of ARA70 as a ligand-enhanced coactivator for the peroxisome proliferator-activated receptor γ,” Journal of Biological Chemistry, vol. 274, no. 23, pp. 16147–16152, 1999. View at Publisher · View at Google Scholar · View at Scopus
  42. S.-K. Lee, S. L. Anzick, J.-E. Choi et al., “A nuclear factor, ASC-2, as a cancer-amplified transcriptional coactivator essential for ligand-dependent transactivation by nuclear receptors in vivo,” Journal of Biological Chemistry, vol. 274, no. 48, pp. 34283–34293, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Jepsen and M. G. Rosenfeld, “Biological roles and mechanistic actions of corepressor complexes,” Journal of Cell Science, vol. 115, no. 4, pp. 689–698, 2002. View at Google Scholar · View at Scopus
  44. J. Li, Q. Lin, H.-G. Yoon et al., “Involvement of histone methylation and phosphorylation in regulation of transcription by thyroid hormone receptor,” Molecular and Cellular Biology, vol. 22, no. 16, pp. 5688–5697, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. X. Hu, Y. Li, and M. A. Lazar, “Determinants of CoRNR-dependent repression complex assembly on nuclear hormone receptors,” Molecular and Cellular Biology, vol. 21, no. 5, pp. 1747–1758, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. E. Treuter, T. Albrektsen, L. Johansson, J. Leers, and J.-A. Gustafsson, “A regulatory role for RIP140 in nuclear receptor activation,” Molecular Endocrinology, vol. 12, no. 6, pp. 864–881, 1998. View at Google Scholar · View at Scopus
  47. G. Pascual, A. L. Fong, S. Ogawa et al., “A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-γ,” Nature, vol. 437, no. 7059, pp. 759–763, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. T. Kielian and P. D. Drew, “Effects of peroxisome proliferator-activated receptor-γ agonists on central nervous system inflammation,” Journal of Neuroscience Research, vol. 71, no. 3, pp. 315–325, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Hummasti and P. Tontonoz, “The peroxisome proliferator-activated receptor N-terminal domain controls isotype-selective gene expression and adipogenesis,” Molecular Endocrinology, vol. 20, no. 6, pp. 1261–1275, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Werman, A. Hollenberg, G. Solanes, C. Bjørbæk, A. J. Vidal-Puig, and J. S. Flier, “Ligand-independent activation domain in the N terminus of peroxisome proliferator-activated receptor γ (PPARγ). Differential activity of PPARγ1 and -2 isoforms and influence of insulin,” Journal of Biological Chemistry, vol. 272, no. 32, pp. 20230–20235, 1997. View at Publisher · View at Google Scholar · View at Scopus
  51. R. Saladin, L. Fajas, S. Dana, Y.-D. Halvorsen, J. Auwerx, and M. Briggs, “Differential regulation of peroxisome proliferator activated receptor γ1 (PPARγ1) and PPARγ2 messenger RNA expression in the early stages of adipogenesis,” Cell Growth and Differentiation, vol. 10, no. 1, pp. 43–48, 1999. View at Google Scholar · View at Scopus
  52. M. Lehrke and M. A. Lazar, “The many faces of PPARγ,” Cell, vol. 123, no. 6, pp. 993–999, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Barak, M. C. Nelson, E. S. Ong et al., “PPARγ is required for placental, cardiac, and adipose tissue development,” Molecular Cell, vol. 4, no. 4, pp. 585–595, 1999. View at Publisher · View at Google Scholar · View at Scopus
  54. J. R. Jones, C. Barrick, K.-A. Kim et al., “Deletion of PPARγ in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 17, pp. 6207–6212, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. H. Koutnikova, T.-A. Cock, M. Watanabe et al., “Compensation by the muscle limits the metabolic consequences of lipodystrophy in PPARγ hypomorphic mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 24, pp. 14457–14462, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. J. Zhang, M. Fu, T. Cui et al., “Selective disruption of PPARγ2 impairs the development of adipose tissue and insulin sensitivity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 29, pp. 10703–10708, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. D. Altshuler, J. N. Hirschhorn, M. Klannemark et al., “The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes,” Nature Genetics, vol. 26, no. 1, pp. 76–80, 2000. View at Publisher · View at Google Scholar · View at Scopus
  58. G. Medina-Gomez, S. Virtue, C. Lelliott et al., “The link between nutritional status and insulin sensitivity is dependent on the adipocyte-specific peroxisome proliferator-activated receptor-γ2 isoform,” Diabetes, vol. 54, no. 6, pp. 1706–1716, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. P. D. G. Miles, Y. Barak, W. He, R. M. Evans, and J. M. Olefsky, “Improved insulin-sensitivity in mice heterozygous for PPAR-γ deficiency,” Journal of Clinical Investigation, vol. 105, no. 3, pp. 287–292, 2000. View at Google Scholar · View at Scopus
  60. P. D. G. Miles, Y. Barak, R. M. Evans, and J. M. Olefsky, “Effect of heterozygous PPARγ deficiency and TZD treatment on insulin resistance associated with age and high-fat feeding,” American Journal of Physiology—Endocrinology and Metabolism, vol. 284, no. 3, pp. E618–E626, 2003. View at Google Scholar · View at Scopus
  61. S. I. Anghel, E. Bedu, C. D. Vivier, P. Descombes, B. Desvergne, and W. Wahli, “Adipose tissue integrity as a prerequisite for systemic energy balance: a critical role for peroxisome proliferator-activated receptor γ,” Journal of Biological Chemistry, vol. 282, no. 41, pp. 29946–29957, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. J. Rieusset, J. Seydoux, S. I. Anghel et al., “Altered growth in male peroxisome proliferator-activated receptor γ (PPARγ) heterozygous mice: involvement of PPARγ in a negative feedback regulation of growth hormone action,” Molecular Endocrinology, vol. 18, no. 10, pp. 2363–2377, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. W. He, Y. Barak, A. Hevener et al., “Adipose-specific peroxisome proliferator-activated receptor γ knockout causes insulin resistance in fat and liver but not in muscle,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 26, pp. 15712–15717, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Hirakata, R. Tozawa, Y. Imura, and Y. Sugiyama, “Comparison of the effects of pioglitazone and rosiglitazone on macrophage foam cell formation,” Biochemical and Biophysical Research Communications, vol. 323, no. 3, pp. 782–788, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. P. Tontonoz, L. Nagy, J. G. A. Alvarez, V. A. Thomazy, and R. M. Evans, “PPARγ promotes monocyte/macrophage differentiation and uptake of oxidized LDL,” Cell, vol. 93, no. 2, pp. 241–252, 1998. View at Publisher · View at Google Scholar · View at Scopus
  66. T. E. Akiyama, S. Sakai, G. Lambert et al., “Conditional disruption of the peroxisome proliferator-activated receptor γ gene in mice results in lowered expression of ABCA1, ABCG1, and apoE in macrophages and reduced cholesterol efflux,” Molecular and Cellular Biology, vol. 22, no. 8, pp. 2607–2619, 2002. View at Publisher · View at Google Scholar · View at Scopus
  67. V. R. Babaev, P. G. Yancey, S. V. Ryzhov et al., “Conditional knockout of macrophage PPARγ increases atherosclerosis in C57BL/6 and low-density lipoprotein receptor-deficient mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 8, pp. 1647–1653, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. C. De Luca and J. M. Olefsky, “Stressed out about obesity and insulin resistance,” Nature Medicine, vol. 12, no. 1, pp. 41–42, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. S. P. Weisberg, D. McCann, M. Desai, M. Rosenbaum, R. L. Leibel, and A. W. Ferrante Jr., “Obesity is associated with macrophage accumulation in adipose tissue,” Journal of Clinical Investigation, vol. 112, no. 12, pp. 1796–1808, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. H. Xu, G. T. Barnes, Q. Yang et al., “Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance,” Journal of Clinical Investigation, vol. 112, no. 12, pp. 1821–1830, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Heikkinen, J. Auwerx, and C. A. Argmann, “PPARγ in human and mouse physiology,” Biochimica et Biophysica Acta, vol. 1771, no. 8, pp. 999–1013, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. W. He, “PPARγ2Pro12Ala polymorphism and human health,” PPAR Research, vol. 2009, Article ID 849538, 15 pages, 2009. View at Publisher · View at Google Scholar
  73. S. S. Deeb, L. Fajas, M. Nemoto et al., “A Pro12Ala substitution in PPARγ2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity,” Nature Genetics, vol. 20, no. 3, pp. 284–287, 1998. View at Publisher · View at Google Scholar · View at Scopus
  74. I. Barroso, M. Gurnell, V. E. F. Crowley et al., “Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension,” Nature, vol. 402, no. 6764, pp. 880–883, 1999. View at Publisher · View at Google Scholar · View at Scopus
  75. J. Masugi, Y. Tamori, H. Mori, T. Koike, and M. Kasuga, “Inhibitory effect of a proline-to-alanine substitution at codon 12 of peroxisome proliferator-activated receptor-γ 2 on thiazolidinedione-induced adipogenesis,” Biochemical and Biophysical Research Communications, vol. 268, no. 1, pp. 178–182, 2000. View at Publisher · View at Google Scholar · View at Scopus
  76. D. B. Savage, M. Agostini, I. Barroso et al., “Digenic inheritance of severe insulin resistance in a human pedigree,” Nature Genetics, vol. 31, no. 4, pp. 379–384, 2002. View at Publisher · View at Google Scholar · View at Scopus
  77. R. A. Hegele, H. Cao, C. Frankowski, S. T. Mathews, and T. Leff, “PPARG F388L, a transactivation-deficient mutant, in familial partial lipodystrophy,” Diabetes, vol. 51, no. 12, pp. 3586–3590, 2002. View at Google Scholar · View at Scopus
  78. M. Kolehmainen, M. I. J. Uusitupa, E. Alhava, M. Laakso, and H. Vidal, “Effect of the Pro12Ala polymorphism in the peroxisome proliferator-activated receptor (PPAR) γ2 gene on the expression of PPARγ target genes in adipose tissue of massively obese subjects,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 4, pp. 1717–1722, 2003. View at Publisher · View at Google Scholar · View at Scopus
  79. Y. L. Muller, C. Bogardus, B. A. Beamer, A. R. Shuldiner, and L. J. Baier, “A functional variant in the peroxisome proliferator—activated receptor γ2 promoter is associated with predictors of obesity and type 2 diabetes in Pima Indians,” Diabetes, vol. 52, no. 7, pp. 1864–1871, 2003. View at Google Scholar · View at Scopus
  80. K. Al-Shali, H. Cao, N. Knoers, A. R. Hermus, C. J. Tack, and R. A. Hegele, “A single-base mutation in the peroxisome proliferator-activated receptor γ4 promoter associated with altered in vitro expression and partial lipodystrophy,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 11, pp. 5655–5660, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Agostini, M. Gurnell, D. B. Savage et al., “Tyrosine agonists reverse the molecular defects associated with dominant-negative mutations in human peroxisome proliferator-activated receptor γ,” Endocrinology, vol. 145, no. 4, pp. 1527–1538, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. M. Agostini, E. Schoenmakers, C. Mitchell et al., “Non-DNA binding, dominant-negative, human PPARγ mutations cause lipodystrophic insulin resistance,” Cell Metabolism, vol. 4, no. 4, pp. 303–311, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. S. Heikkinen, C. Argmann, J. N. Feige et al., “The Pro12Ala PPARγ2 variant determines metabolism at the gene-environment interface,” Cell Metabolism, vol. 9, no. 1, pp. 88–98, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. D. Capaccio, A. Ciccodicola, L. Sabatino et al., “A novel germline mutation in peroxisome proliferator-activated receptor γ gene associated with large intestine polyp formation and dyslipidemia,” Biochimica et Biophysica Acta, vol. 1802, no. 6, pp. 572–581, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. H. Mori, H. Ikegami, Y. Kawaguchi et al., “The Pro12→Ala substitution in PPAR-γ is associated with resistance to development of diabetes in the general population: possible involvement in impairment of insulin secretion in individuals with type 2 diabetes,” Diabetes, vol. 50, no. 4, pp. 891–894, 2001. View at Google Scholar · View at Scopus
  86. S. Masud and S. Ye, “Effect of the peroxisome proliferates activated receptor-γ gene Pro12Ala variant on body mass index: a meta-analysis,” Journal of Medical Genetics, vol. 40, no. 10, pp. 773–780, 2003. View at Google Scholar · View at Scopus
  87. A. S. F. Doney, B. Fischer, J. E. Cecil et al., “Association of the Pro12Ala and C1431T variants of PPARG and their haplotypes with susceptibility to Type 2 diabetes,” Diabetologia, vol. 47, no. 3, pp. 555–558, 2004. View at Publisher · View at Google Scholar · View at Scopus
  88. V. Costa, A. Casamassimi, K. Esposito et al., “Characterization of a novel polymorphism in PPARG regulatory region associated with type 2 diabetes and diabetic retinopathy in Italy,” Journal of Biomedicine and Biotechnology, vol. 2009, Article ID 126917, 7 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. D. A. Chistiakov, V. A. Potapov, D. S. Khodirev, M. S. Shamkhalova, M. V. Shestakova, and V. V. Nosikov, “The PPARγ Pro12Ala variant is associated with insulin sensitivity in Russian normoglycaemic and type 2 diabetic subjects,” Diabetes and Vascular Disease Research, vol. 7, no. 1, pp. 56–62, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. A. Meirhaeghe, L. Fajas, N. Helbecque et al., “A genetic polymorphism of the peroxisome proliferator-activated receptor γ gene influences plasma leptin levels in obese humans,” Human Molecular Genetics, vol. 7, no. 3, pp. 435–440, 1998. View at Publisher · View at Google Scholar · View at Scopus
  91. R. Valve, K. Sivenius, R. Miettinen et al., “Two polymorphisms in the peroxisome proliferator-activated receptor-γ gene are associated with severe overweight among obese women,” Journal of Clinical Endocrinology and Metabolism, vol. 84, no. 10, pp. 3708–3712, 1999. View at Google Scholar · View at Scopus
  92. I. Simón, J. Vendrell, C. Gutiérrez et al., “Pro12Ala substitution in the peroxisome proliferator-activated receptor-gamma is associated with increased leptin levels in women with type-2 diabetes mellitus,” Hormone Research, vol. 58, no. 3, pp. 143–149, 2002. View at Publisher · View at Google Scholar · View at Scopus
  93. J. Schneider, J. Kreuzer, A. Hamann, P. P. Nawroth, and K. A. Dugi, “The proline 12 alanine substitution in the peroxisome proliferator-activated receptor-γ2 gene is associated with lower lipoprotein lipase activity in vivo,” Diabetes, vol. 51, no. 3, pp. 867–870, 2002. View at Google Scholar · View at Scopus
  94. Y. Yamamoto, H. Hirose, K. Miyashita et al., “PPARγ2 gene Pro12Ala polymorphism may influence serum level of an adipocyte-derived protein, adiponectin, in the Japanese population,” Metabolism, vol. 51, no. 11, pp. 1407–1409, 2002. View at Google Scholar · View at Scopus
  95. A. Meirhaeghe, L. Fajas, F. Gouilleux et al., “A functional polymorphism in a STAT5B site of the human PPARγ3 gene promoter affects height and lipid metabolism in a French population,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 2, pp. 289–294, 2003. View at Publisher · View at Google Scholar · View at Scopus
  96. N. Takata, T. Awata, K. Inukai et al., “Pro12Ala substitution in peroxisome proliferator-activated receptorγ2 is associated with low adiponectin concentrations in young Japanese men,” Metabolism, vol. 53, no. 12, pp. 1548–1551, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. C. Wang, F. Zhai, Y. Chi, and G. Wang, “Association of Pro12Ala mutation in peroxisome proliferator-activated receptor gamma 2 with obesity and diabetes in Chinese population,” Wei Sheng Yan Jiu, vol. 33, no. 3, pp. 317–320, 2004. View at Google Scholar · View at Scopus
  98. F. Orio Jr., S. Palomba, T. Cascella et al., “Lack of an association between peroxisome proliferator-activated receptor-γ gene Pro12Ala polymorphism and adiponectin levels in the polycystic ovary syndrome,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 10, pp. 5110–5115, 2004. View at Publisher · View at Google Scholar · View at Scopus
  99. A. Meirhaeghe, D. Cottel, P. Amouyel, and J. Dallongeville, “Association between peroxisome proliferator-activated receptor γ haplotypes and the metabolic syndrome in French men and women,” Diabetes, vol. 54, no. 10, pp. 3043–3048, 2005. View at Publisher · View at Google Scholar · View at Scopus
  100. B. Bidzińska-Speichert, M. Demissie, U. Tworowska et al., “Leptin level and the PPARgamma2 Pro12Ala and Pro115Gln polymorphisms in women with functional hyperandrogenism. Preliminary report,” Przeglad Lekarski, vol. 62, no. 9, pp. 833–837, 2005. View at Google Scholar
  101. V. Radha, K. S. Vimaleswaran, S. Babu et al., “Lack of association between serum adiponectin levels and the Pro12Ala polymorphism in Asian Indians,” Diabetic Medicine, vol. 24, no. 4, pp. 398–402, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. A. Haseeb, M. Iliyas, S. Chakrabarti et al., “Single-nucleotide polymorphisms in peroxisome proliferator-activated receptor gamma and their association with plasma levels of resistin and the metabolic syndrome in a South Indian population,” Journal of Biosciences, vol. 34, no. 3, pp. 405–414, 2009. View at Google Scholar · View at Scopus
  103. A. S. F. Doney, B. Fischer, G. Leese, A. D. Morris, and C. N. A. Palmer, “Cardiovascular risk in type 2 diabetes is associated with variation at the PPARG locus: a go-DARTS study,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 12, pp. 2403–2407, 2004. View at Publisher · View at Google Scholar · View at Scopus
  104. F. P. Mancini, O. Vaccaro, L. Sabatino et al., “Pro12Ala substitution in the peroxisome proliferator-activated receptor- γ2 is not associated with type 2 diabetes,” Diabetes, vol. 48, no. 7, pp. 1466–1468, 1999. View at Publisher · View at Google Scholar · View at Scopus
  105. D. K. Sanghera, F. Y. Demirci, L. Been et al., “PPARG and ADIPOQ gene polymorphisms increase type 2 diabetes mellitus risk in Asian Indian Sikhs: Pro12Ala still remains as the strongest predictor,” Metabolism, vol. 59, no. 4, pp. 492–501, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. E. J. Rhee, K. W. Oh, W. Y. Lee et al., “Effects of two common polymorphisms of peroxisome proliferator-activated receptor-γ gene on metabolic syndrome,” Archives of Medical Research, vol. 37, no. 1, pp. 86–94, 2006. View at Publisher · View at Google Scholar · View at Scopus
  107. E. S. Tai, D. Corella, M. Deurenberg-Yap et al., “Differential effects of the C1431T and Pro12Ala PPARγ gene variants on plasma lipids and diabetes risk in an Asian population,” Journal of Lipid Research, vol. 45, no. 4, pp. 674–685, 2004. View at Publisher · View at Google Scholar · View at Scopus
  108. M. Ristow, D. Müller-Wieland, A. Pfeiffer, W. Krone, and C. R. Kahn, “Obesity associated with a mutation in a genetic regulator of adipocyte differentiation,” New England Journal of Medicine, vol. 339, no. 14, pp. 953–959, 1998. View at Publisher · View at Google Scholar · View at Scopus
  109. A. K. Agarwal and A. Garg, “A novel heterozygous mutation in peroxisome proliferator-activated receptor-γ gene in a patient with familial partial lipodystrophy,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 1, pp. 408–411, 2002. View at Publisher · View at Google Scholar · View at Scopus
  110. H. N. Gouda, G. S. Sagoo, A.-H. Harding, J. Yates, M. S. Sandhu, and J. P. T. Higgins, “The association between the peroxisome proliferator-activated receptor-γ2 (PPARG2) Pro12Ala gene variant and type 2 diabetes mellitus: a HuGE review and meta-analysis,” American Journal of Epidemiology, vol. 171, no. 6, pp. 645–655, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. T.-Y. Zheng, Y.-J. Lin, and J.-C. Horng, “Thermodynamic consequences of incorporating 4-substituted proline derivatives into a small helical protein,” Biochemistry, vol. 49, no. 19, pp. 4255–4263, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. K. Clement, S. Hercberg, B. Passinge et al., “The Pro115Gln and Pro12Ala PPAR gamma gene mutations in obesity and type 2 diabetes,” International Journal of Obesity, vol. 24, no. 3, pp. 391–393, 2000. View at Google Scholar · View at Scopus
  113. T. T. Agústsson, H. Hákonarson, I. Olafsson, G. Hjaltadóttir, and A. V. Thornórsson, “A mutation detection in a transcription factor for adipocyte development in children with severe obesity,” Laeknabladid, vol. 87, no. 2, pp. 119–124, 2001. View at Google Scholar
  114. O. W. Hamer, D. Forstner, I. Ottinger et al., “The pro115Gln polymorphism within the PPAR γ2 gene has no epidemiological impact on morbid obesity,” Experimental and Clinical Endocrinology and Diabetes, vol. 110, no. 5, pp. 230–234, 2002. View at Publisher · View at Google Scholar · View at Scopus
  115. M. B. Hadj Mohamed, N. Mtiraoui, I. Ezzidi, M. Chaieb, T. Mahjoub, and W. Y. Almawi, “Association of the peroxisome proliferator-activated receptor-γ2 Pro12Ala but not the C1431T gene variants with lower body mass index in type 2 diabetes,” Journal of Endocrinological Investigation, vol. 30, no. 11, pp. 937–943, 2007. View at Google Scholar · View at Scopus
  116. M. Stumvoll and H. Häring, “The peroxisome proliferator-activated receptor-γ2 Pro12Ala polymorphism,” Diabetes, vol. 51, no. 8, pp. 2341–2347, 2002. View at Google Scholar · View at Scopus
  117. T. I. Lee and R. A. Young, “Transcription of eukaryotic protein-coding genes,” Annual Review of Genetics, vol. 34, pp. 77–137, 2000. View at Publisher · View at Google Scholar · View at Scopus
  118. G. Jimenez-Sanchez, B. Childs, and D. Valle, “Human disease genes,” Nature, vol. 409, no. 6822, pp. 853–855, 2001. View at Publisher · View at Google Scholar · View at Scopus
  119. E. R. Mardis, “Next-generation DNA sequencing methods,” Annual Review of Genomics and Human Genetics, vol. 9, pp. 387–402, 2008. View at Publisher · View at Google Scholar · View at Scopus
  120. J. M. Vaquerizas, S. K. Kummerfeld, S. A. Teichmann, and N. M. Luscombe, “A census of human transcription factors: function, expression and evolution,” Nature Reviews Genetics, vol. 10, no. 4, pp. 252–263, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. V. Costa, C. Angelini, I. de Feis, and A. Ciccodicola, “Uncovering the complexity of transcriptomes with RNA-Seq,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 853916, 19 pages, 2010. View at Google Scholar
  122. M. L. Metzker, “Sequencing technologies—the next generation,” Nature Reviews Genetics, vol. 11, no. 1, pp. 31–46, 2010. View at Publisher · View at Google Scholar · View at Scopus
  123. G. Robertson, M. Hirst, M. Bainbridge et al., “Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing,” Nature Methods, vol. 4, no. 8, pp. 651–657, 2007. View at Publisher · View at Google Scholar · View at Scopus
  124. A. Valouev, D. S. Johnson, A. Sundquist et al., “Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data,” Nature Methods, vol. 5, no. 9, pp. 829–834, 2008. View at Publisher · View at Google Scholar · View at Scopus
  125. T. E. Reddy, F. Pauli, R. O. Sprouse et al., “Genomic determination of the glucocorticoid response reveals unexpected mechanisms of gene regulation,” Genome Research, vol. 19, no. 12, pp. 2163–2171, 2009. View at Publisher · View at Google Scholar · View at Scopus
  126. F. Dahl, M. Gullberg, J. Stenberg, U. Landegren, and M. Nilsson, “Multiplex amplification enabled by selective circularization of large sets of genomic DNA fragments,” Nucleic Acids Research, vol. 33, no. 8, article e71, 2005. View at Google Scholar · View at Scopus
  127. S. Fredriksson, J. Banér, F. Dahl et al., “Multiplex amplification of all coding sequences within 10 cancer genes by Gene-Collector,” Nucleic Acids Research, vol. 35, no. 7, article e47, 2007. View at Publisher · View at Google Scholar · View at Scopus
  128. G. J. Porreca, K. Zhang, J. B. Li et al., “Multiplex amplification of large sets of human exons,” Nature Methods, vol. 4, no. 11, pp. 931–936, 2007. View at Publisher · View at Google Scholar · View at Scopus
  129. J. Shendure and H. Ji, “Next-generation DNA sequencing,” Nature Biotechnology, vol. 26, no. 10, pp. 1135–1145, 2008. View at Publisher · View at Google Scholar · View at Scopus
  130. E. Hodges, Z. Xuan, V. Balija et al., “Genome-wide in situ exon capture for selective resequencing,” Nature Genetics, vol. 39, no. 12, pp. 1522–1527, 2007. View at Publisher · View at Google Scholar · View at Scopus
  131. T. J. Albert, M. N. Molla, D. M. Muzny et al., “Direct selection of human genomic loci by microarray hybridization,” Nature Methods, vol. 4, no. 11, pp. 903–905, 2007. View at Publisher · View at Google Scholar · View at Scopus
  132. L.-S. Chou, C.-S. J. Liu, B. Boese, X. Zhang, and R. Mao, “DNA sequence capture and enrichment by microarray followed by next-generation sequencing for targeted resequencing: neurofibromatosis type 1 gene as a model,” Clinical Chemistry, vol. 56, no. 1, pp. 62–72, 2010. View at Publisher · View at Google Scholar · View at Scopus
  133. G. A. Heap, J. H. M. Yang, K. Downes et al., “Genome-wide analysis of allelic expression imbalance in human primary cells by high-throughput transcriptome resequencing,” Human Molecular Genetics, vol. 19, no. 1, pp. 122–134, 2010. View at Publisher · View at Google Scholar · View at Scopus
  134. D. J. Sugarbaker, W. G. Richards, G. J. Gordon et al., “Transcriptome sequencing of malignant pleural mesothelioma tumors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 9, pp. 3521–3526, 2008. View at Publisher · View at Google Scholar · View at Scopus
  135. A. M. Barrio, O. Eriksson, J. Badhai et al., “Targeted resequencing and analysis of the diamond-blackfan anemia disease locus RPS19,” PLoS ONE, vol. 4, no. 7, article e6172, 2009. View at Publisher · View at Google Scholar · View at Scopus
  136. P. J. Park, “ChIP-seq: advantages and challenges of a maturing technology,” Nature Reviews Genetics, vol. 10, no. 10, pp. 669–680, 2009. View at Publisher · View at Google Scholar · View at Scopus
  137. V. E. Velculescu, L. Zhang, W. Zhou et al., “Characterization of the yeast transcriptome,” Cell, vol. 88, no. 2, pp. 243–251, 1997. View at Publisher · View at Google Scholar · View at Scopus
  138. E. Birney, J. A. Stamatoyannopoulos, A. Dutta et al., “Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project,” Nature, vol. 447, no. 7146, pp. 799–816, 2007. View at Publisher · View at Google Scholar · View at Scopus
  139. A. Jacquier, “The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs,” Nature Reviews Genetics, vol. 10, no. 12, pp. 833–844, 2009. View at Publisher · View at Google Scholar · View at Scopus
  140. N. Cloonan, A. R. R. Forrest, G. Kolle et al., “Stem cell transcriptome profiling via massive-scale mRNA sequencing,” Nature Methods, vol. 5, no. 7, pp. 613–619, 2008. View at Publisher · View at Google Scholar · View at Scopus
  141. J. C. Marioni, C. E. Mason, S. M. Mane, M. Stephens, and Y. Gilad, “RNA-Seq: an assessment of technical reproducibility and comparison with gene expression arrays,” Genome Research, vol. 18, no. 9, pp. 1509–1517, 2008. View at Publisher · View at Google Scholar · View at Scopus
  142. A. Mortazavi, B. A. Williams, K. McCue, L. Schaeffer, and B. Wold, “Mapping and quantifying mammalian transcriptomes by RNA-Seq,” Nature Methods, vol. 5, no. 7, pp. 621–628, 2008. View at Publisher · View at Google Scholar · View at Scopus
  143. U. Nagalakshmi, Z. Wang, K. Waern et al., “The transcriptional landscape of the yeast genome defined by RNA sequencing,” Science, vol. 320, no. 5881, pp. 1344–1349, 2008. View at Publisher · View at Google Scholar · View at Scopus
  144. T. T. Torres, M. Metta, B. Ottenwälder, and C. Schlötterer, “Gene expression profiling by massively parallel sequencing,” Genome Research, vol. 18, no. 1, pp. 172–177, 2008. View at Publisher · View at Google Scholar · View at Scopus
  145. M. Sultan, M. H. Schulz, H. Richard et al., “A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome,” Science, vol. 321, no. 5891, pp. 956–960, 2008. View at Publisher · View at Google Scholar · View at Scopus
  146. S.-I. Hashimoto, W. Qu, B. Ahsan et al., “High-resolution analysis of the 5-end transcriptome using a next generation DNA sequencer,” PLoS ONE, vol. 4, no. 1, article e4108, 2009. View at Publisher · View at Google Scholar · View at Scopus
  147. F. Tang, C. Barbacioru, Y. Wang et al., “mRNA-Seq whole-transcriptome analysis of a single cell,” Nature Methods, vol. 6, no. 5, pp. 377–382, 2009. View at Publisher · View at Google Scholar · View at Scopus
  148. Z. Wang, M. Gerstein, and M. Snyder, “RNA-Seq: a revolutionary tool for transcriptomics,” Nature Reviews Genetics, vol. 10, no. 1, pp. 57–63, 2009. View at Publisher · View at Google Scholar · View at Scopus
  149. B. T. Wilhelm, S. Marguerat, I. Goodhead, and J. Bähler, “Defining transcribed regions using RNA-Seq,” Nature Protocols, vol. 5, no. 2, pp. 255–266, 2010. View at Publisher · View at Google Scholar · View at Scopus