Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2010, Article ID 937123, 7 pages
http://dx.doi.org/10.1155/2010/937123
Review Article

Regulation of PPAR Coactivator-1 Function and Expression in Muscle: Effect of Exercise

1School of Kinesiology and Health Science, York University, Toronto, ON, Canada M3J 1P3
2Muscle Health Research Centre, York University, Toronto, ON, Canada M3J 1P3
3Department of Biology, York University, Toronto, ON, Canada M3J 1P3

Received 7 May 2010; Accepted 1 July 2010

Academic Editor: Josep Bassaganya-Riera

Copyright © 2010 Giulia Uguccioni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Puigserver and B. M. Spiegelman, “Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): transcriptional coactivator and metabolic regulator,” Endocrine Reviews, vol. 24, no. 1, pp. 78–90, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Lin, H. Wu, P. T. Tarr et al., “Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres,” Nature, vol. 418, no. 6899, pp. 797–801, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. L. F. Michael, Z. Wu, R. B. Cheatham et al., “Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 7, pp. 3820–3825, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Puigserver, Z. Wu, C. W. Park, R. Graves, M. Wright, and B. M. Spiegelman, “A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis,” Cell, vol. 92, no. 6, pp. 829–839, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. Z. Wu, P. Puigserver, U. Andersson et al., “Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1,” Cell, vol. 98, no. 1, pp. 115–124, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Lin, P. T. Tarr, R. Yang et al., “PGC-1β in the regulation of hepatic glucose and energy metabolism,” The Journal of Biological Chemistry, vol. 278, no. 33, pp. 30843–30848, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Kressler, S. N. Schreiber, D. Knutti, and A. Kralli, “The PGC-1-related protein PERC is a selective coactivator of estrogen receptor α,” The Journal of Biological Chemistry, vol. 277, no. 16, pp. 13918–13925, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Lin, P. Puigserver, J. Donovan, P. Tarr, and B. M. Spiegelman, “Peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β), a novel PGC-1-related transcription coactivator associated with host cell factor,” The Journal of Biological Chemistry, vol. 277, no. 3, pp. 1645–1648, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. J. St-Pierre, J. Lin, S. Krauss et al., “Bioenergetic analysis of peroxisome proliferator-activated receptor γ coactivators 1α and 1β (PGC-1α and PGC-1β) in muscle cells,” The Journal of Biological Chemistry, vol. 278, no. 29, pp. 26597–26603, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Vercauteren, R. A. Pasko, N. Gleyzer, V. M. Marino, and R. C. Scarpulla, “PGC-1-related coactivator: immediate early expression and characterization of a CREB/NRF-1 binding domain associated with cytochrome c promoter occupancy and respiratory growth,” Molecular and Cellular Biology, vol. 26, no. 20, pp. 7409–7419, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Vercauteren, N. Gleyzer, and R. C. Scarpulla, “PGC-1-related coactivator complexes with HCF-1 and NRF-2β in mediating NRF-2(GABP)-dependent respiratory gene expression,” The Journal of Biological Chemistry, vol. 283, no. 18, pp. 12102–12111, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Vercauteren, N. Gleyzer, and R. C. Scarpulla, “Short hairpin RNA-mediated silencing of PRC (PGC-1-related coactivator) results in a severe respiratory chain deficiency associated with the proliferation of aberrant mitochondria,” The Journal of Biological Chemistry, vol. 284, no. 4, pp. 2307–2319, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Liang and W. F. Ward, “PGC-1α: a key regulator of energy metabolism,” American Journal of Physiology, vol. 30, no. 4, pp. 145–151, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Puigserver, G. Adelmant, Z. Wu et al., “Activation of PPARγ coactivator-1 through transcription factor docking,” Science, vol. 286, no. 5443, pp. 1368–1371, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. H.-P. Guan, T. Ishizuka, P. C. Chui, M. Lehrke, and M. A. Lazar, “Corepressors selectively control the transcriptional activity of PPARγ in adipocytes,” Genes and Development, vol. 19, no. 4, pp. 453–461, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Monsalve, Z. Wu, G. Adelmant, P. Puigserver, M. Fan, and B. M. Spiegelman, “Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1,” Molecular Cell, vol. 6, no. 2, pp. 307–316, 2000. View at Google Scholar · View at Scopus
  17. D. Knutti, A. Kaul, and A. Kralli, “A tissue-specific coactivator of steroid receptors, identified in a functional genetic screen,” Molecular and Cellular Biology, vol. 20, no. 7, pp. 2411–2422, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Esterbauer, H. Oberkofler, F. Krempler, and W. Patsch, “Human peroxisome proliferator activated receptor gamma coactivator 1 (PPARGC1) gene: cDNA sequence, genomic organization, chromosomal localization, and tissue expression,” Genomics, vol. 62, no. 1, pp. 98–102, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. I. Irrcher, P. J. Adhihetty, T. Sheehan, A.-M. Joseph, and D. A. Hood, “PPARγ coactivator-1α expression during thyroid hormone- and contractile activity-induced mitochondrial adaptations,” American Journal of Physiology, vol. 284, no. 6, pp. C1669–C1677, 2003. View at Google Scholar · View at Scopus
  20. P. J. Adhihetty, G. Uguccioni, L. Leick, J. Hidalgo, H. Pilegaard, and D. A. Hood, “The role of PGC-1α on mitochondrial function and apoptotic susceptibility in muscle,” American Journal of Physiology, vol. 297, no. 1, pp. C217–C225, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. R. B. Vega, J. M. Huss, and D. P. Kelly, “The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor α in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes,” Molecular and Cellular Biology, vol. 20, no. 5, pp. 1868–1876, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Falkenberg, N.-G. Larsson, and C. M. Gustafsson, “DNA replication and transcription in mammalian mitochondria,” Annual Review of Biochemistry, vol. 76, pp. 679–699, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. D. C. Wallace, “A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine,” Annual Review of Genetics, vol. 39, pp. 359–407, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. D. A. Hood, I. Irrcher, V. Ljubicic, and A.-M. Joseph, “Coordination of metabolic plasticity in skeletal muscle,” Journal of Experimental Biology, vol. 209, no. 12, pp. 2265–2275, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Gleyzer, K. Vercauteren, and R. C. Scarpulla, “Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators,” Molecular and Cellular Biology, vol. 25, no. 4, pp. 1354–1366, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. R. C. Scarpulla, “Nuclear control of respiratory gene expression in mammalian cells,” Journal of Cellular Biochemistry, vol. 97, no. 4, pp. 673–683, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. S. N. Schreiber, R. Emter, M. B. Hock et al., “The estrogen-related receptor α (ERRα) functions in PPARγ coactivator 1α (PGC-1α)-induced mitochondrial biogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 17, pp. 6472–6477, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. V. A. Narkar, M. Downes, R. T. Yu et al., “AMPK and PPARδ agonists are exercise mimetics,” Cell, vol. 134, no. 3, pp. 405–415, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. Y.-X. Wang, C.-L. Zhang, R. T. Yu et al., “Regulation of muscle fiber type and running endurance by PPARδ,” PLoS Biology, vol. 2, no. 10, article e294, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. V. Ljubicic, A.-M. Joseph, A. Saleem et al., “Transcriptional and post-transcriptional regulation of mitochondrial biogenesis in skeletal muscle: effects of exercise and aging,” Biochimica et Biophysica Acta, vol. 1800, no. 3, pp. 223–234, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Pilegaard, B. Saltin, and D. P. Neufer, “Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle,” Journal of Physiology, vol. 546, no. 3, pp. 851–858, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Akimoto, S. C. Pohnert, P. Li et al., “Exercise stimulates Pgc-1α transcription in skeletal muscle through activation of the p38 MAPK pathway,” The Journal of Biological Chemistry, vol. 280, no. 20, pp. 19587–19593, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. Z. Yan, P. Li, and T. Akimoto, “Transcriptional control of the Pgc-1α gene in skeletal muscle in vivo,” Exercise and Sport Sciences Reviews, vol. 35, no. 3, pp. 97–101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. E. O. Ojuka, T. E. Jones, D.-H. Han, M. Chen, and J. O. Holloszy, “Raising Ca2+ in L6 myotubes mimics effects of exercise on mitochondrial biogenesis in muscle,” FASEB Journal, vol. 17, no. 6, pp. 675–681, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. A. R. Pogozelski, T. Geng, P. Li et al., “p38γ mitogen-activated protein kinase is a key regulator in skeletal muscle metabolic adaptation in mice,” PLoS ONE, vol. 4, no. 11, Article ID e7934, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. I. Irrcher, V. Ljubicic, A. F. Kirwan, and D. A. Hood, “AMP-activated protein kinase-regulated activation of the PGC-1α promoter in skeletal muscle cells,” PLoS ONE, vol. 3, no. 10, p. e3614, 2008. View at Google Scholar · View at Scopus
  37. I. Irrcher, V. Ljubicic, and D. A. Hood, “Interactions between ROS and AMP kinase activity in the regulation of PGC-1α transcription in skeletal muscle cells,” American Journal of Physiology, vol. 296, no. 1, pp. C116–C123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Amat, A. Planavila, S. L. Chen, R. Iglesias, M. Giralt, and F. Villarroya, “SIRT1 controls the transcription of the peroxisome proliferator-activated receptor-γ co-activator-1α(PGC-1α) gene in skeletal muscle through the PGC-1α autoregulatory loop and interaction with MyoD,” The Journal of Biological Chemistry, vol. 284, no. 33, pp. 21872–21880, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Handschin, J. Rhee, J. Lin, P. T. Tarr, and B. M. Spiegelman, “An autoregulatory loop controls peroxisome proliferator-activated receptor γ coactivator 1α expression in muscle,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 12, pp. 7111–7116, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Puigserver, J. Rhee, J. Lin et al., “Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARγ coactivator-1,” Molecular Cell, vol. 8, no. 5, pp. 971–982, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. X. Li, B. Monks, Q. Ge, and M. J. Birnbaum, “Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1α transcription coactivator,” Nature, vol. 447, no. 7147, pp. 1012–1016, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Fan, J. Rhee, J. St-Pierre et al., “Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1α: modulation by p38 MAPK,” Genes and Development, vol. 18, no. 3, pp. 278–289, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Knutti, D. Kressler, and A. Kralli, “Regulation of the transcriptional coactivator PGC-1 via MAPK-sensitive interaction with a repressor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 17, pp. 9713–9718, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Jager, C. Handschin, J. St-Pierre, and B. M. Spiegelman, “AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 27, pp. 12017–12022, 2007. View at Google Scholar
  45. C. Lerin, J. T. Rodgers, D. E. Kalume, S.-H. Kim, A. Pandey, and P. Puigserver, “GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1α,” Cell Metabolism, vol. 3, no. 6, pp. 429–438, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Nemoto, M. M. Fergusson, and T. Finkel, “SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α,” The Journal of Biological Chemistry, vol. 280, no. 16, pp. 16456–16460, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. J. T. Rodgers, C. Lerin, W. Haas, S. P. Gygi, B. M. Spiegelman, and P. Puigserver, “Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1,” Nature, vol. 434, no. 7029, pp. 113–118, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Lagouge, C. Argmann, Z. Gerhart-Hines et al., “Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α,” Cell, vol. 127, no. 6, pp. 1109–1122, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. P. Heun, “SUMOrganization of the nucleus,” Current Opinion in Cell Biology, vol. 19, no. 3, pp. 350–355, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. M. M. Rytinki and J. J. Palvimo, “SUMOylation attenuates the function of PGC-1α,” The Journal of Biological Chemistry, vol. 284, no. 38, pp. 26184–26193, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. J. A. Calvo, T. G. Daniels, X. Wang et al., “Muscle-specific expression of PPARγ coactivator-1α improves exercise performance and increases peak oxygen uptake,” Journal of Applied Physiology, vol. 104, no. 5, pp. 1304–1312, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. A. R. Wende, P. J. Schaeffer, G. J. Parker et al., “A role for the transcriptional coactivator PGC-1α in muscle refueling,” The Journal of Biological Chemistry, vol. 282, no. 50, pp. 36642–36651, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. T. C. Leone, J. J. Lehman, B. N. Finck et al., “PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis,” PLoS Biology, vol. 3, no. 4, p. e101, 2005. View at Google Scholar · View at Scopus
  54. J. Lin, P.-H. Wu, P. T. Tarr et al., “Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice,” Cell, vol. 119, no. 1, pp. 121–135, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. C. Handschin, S. Chin, P. Li et al., “Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1α muscle-specific knock-out animals,” The Journal of Biological Chemistry, vol. 282, no. 41, pp. 30014–30021, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Goto, S. Terada, M. Kato et al., “cDNA cloning and mRNA analysis of PGC-1 in epitrochlearis muscle in swimming-exercised rats,” Biochemical and Biophysical Research Communications, vol. 274, no. 2, pp. 350–354, 2000. View at Publisher · View at Google Scholar · View at Scopus
  57. M. K. Connor, I. Irrcher, and D. A. Hood, “Contractile activity-induced transcriptional activation of cytochrome C involves Sp1 and is proportional to mitochondrial ATP synthesis in C2C12 muscle cells,” The Journal of Biological Chemistry, vol. 276, no. 19, pp. 15898–15904, 2001. View at Publisher · View at Google Scholar · View at Scopus
  58. J. W. Gordon, A. A. Rungi, H. Inagaki, and D. A. Hood, “Selected contribution: effects of contractile activity on mitochondrial transcription factor A expression in skeletal muscle,” Journal of Applied Physiology, vol. 90, no. 1, pp. 389–396, 2001. View at Google Scholar · View at Scopus
  59. H. Zong, J. M. Ren, L. H. Young et al., “AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 25, pp. 15983–15987, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. S. B. Jørgensen, J. F. P. Wojtaszewski, B. Viollet et al., “Effects of α-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle,” FASEB Journal, vol. 19, no. 9, pp. 1146–1148, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. D. C. Wright, D.-H. Han, P. M. Garcia-Roves, P. C. Geiger, T. E. Jones, and J. O. Holloszy, “Exercise-induced mitochondrial biogenesis begins before the increase in muscle PGC-1α expression,” The Journal of Biological Chemistry, vol. 282, no. 1, pp. 194–199, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. L. Leick, J. F. P. Wojtaszewski, S. T. Johansen et al., “PGC-1α is not mandatory for exercise- and training-induced adaptive gene responses in mouse skeletal muscle,” American Journal of Physiology, vol. 294, no. 2, pp. E463–E474, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. T. Geng, P. Li, M. Okutsu et al., “PGC-1α plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle,” American Journal of Physiology, vol. 298, no. 3, pp. C572–C579, 2010. View at Publisher · View at Google Scholar · View at Scopus