Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2012, Article ID 242498, 9 pages
http://dx.doi.org/10.1155/2012/242498
Review Article

The Role of Peroxisome Proliferator-Activated Receptors in the Esophageal, Gastric, and Colorectal Cancer

Department of Biological, Geological and Environmental Sciences, University of Sannio, 82100 Benevento, Italy

Received 8 June 2012; Accepted 24 July 2012

Academic Editor: Gianluigi Mazzoccoli

Copyright © 2012 Alessandra Fucci et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Desvergne and W. Wahli, “Peroxisome proliferator-activated receptors: nuclear control of metabolism,” Endocrine Reviews, vol. 20, no. 5, pp. 649–688, 1999. View at Google Scholar · View at Scopus
  2. S. Kersten and W. Wahli, “Peroxisome proliferator activated receptor agonists,” EXS, vol. 89, pp. 141–151, 2000. View at Google Scholar · View at Scopus
  3. L. Michalik, B. Desvergne, and W. Wahli, “Peroxisome-proliferator-activated receptors and cancers: complex stories,” Nature Reviews Cancer, vol. 4, no. 1, pp. 61–70, 2004. View at Google Scholar · View at Scopus
  4. R. M. Evans, G. D. Barish, and Y. X. Wang, “PPARs and the complex journey to obesity,” Nature Medicine, vol. 10, no. 4, pp. 355–361, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. Z. Nahlé, “PPAR trilogy from metabolism to cancer,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 7, no. 4, pp. 397–402, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Michalik, J. Auwerx, J. P. Berger et al., “International union of pharmacology. LXI. Peroxisome proliferator-activated receptors,” Pharmacological Reviews, vol. 58, no. 4, pp. 726–741, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Michalik and W. Wahli, “Involvement of PPAR nuclear receptors in tissue injury and wound repair,” The Journal of Clinical Investigation, vol. 116, no. 3, pp. 598–606, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Fajas, J. C. Fruchart, and J. Auwerx, “PPARγ3 mRNA: a distinct PPARγ mRNA subtype transcribed from an independent promoter,” FEBS Letters, vol. 438, no. 1-2, pp. 55–60, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Al-Shali, H. Cao, N. Knoers, A. R. Hermus, C. J. Tack, and R. A. Hegele, “A single-base mutation in the peroxisome proliferator-activated receptor γ4 promoter associated with altered in vitro expression and partial lipodystrophy,” The Journal of Clinical Endocrinology & Metabolism, vol. 89, no. 11, pp. 5655–5660, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Zhu, K. Alvares, Q. Huang, M. S. Rao, and J. K. Reddy, “Cloning of a new member of the peroxisome proliferator-activated receptor gene family from mouse liver,” Journal of Biological Chemistry, vol. 268, no. 36, pp. 26817–26820, 1993. View at Google Scholar · View at Scopus
  11. A. Meirhaeghe and P. Amouyel, “Impact of genetic variation of PPARγ in humans,” Molecular Genetics and Metabolism, vol. 83, no. 1-2, pp. 93–102, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Tontonoz, E. Hu, R. A. Graves, A. I. Budavari, and B. M. Spiegelman, “mPPARγ2: tissue-specific regulator of an adipocyte enhancer,” Genes and Development, vol. 8, no. 10, pp. 1224–1234, 1994. View at Google Scholar · View at Scopus
  13. C. Diradourian, J. Girard, and J. P. Pégorier, “Phosphorylation of PPARs: from molecular characterization to physiological relevance,” Biochimie, vol. 87, no. 1, pp. 33–38, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. J. P. Renaud and D. Moras, “Structural studies on nuclear receptors,” Cellular and Molecular Life Sciences, vol. 57, no. 12, pp. 1748–1769, 2000. View at Google Scholar · View at Scopus
  15. D. J. Mangelsdorf and R. M. Evans, “The RXR heterodimers and orphan receptors,” Cell, vol. 83, no. 6, pp. 841–850, 1995. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Berger and D. E. Moller, “The mechanisms of action of PPARs,” Annual Review of Medicine, vol. 53, pp. 409–435, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Ricote and C. K. Glass, “PPARs and molecular mechanisms of transrepression,” Biochimica et Biophysica Acta, vol. 1771, no. 8, pp. 926–935, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Yessoufou and W. Wahli, “Multifaceted roles of peroxisome proliferator-activated receptors (PPARs) at the cellular and whole organism levels,” Swiss Medical Weekly, vol. 140, p. w13071, 2010. View at Google Scholar · View at Scopus
  19. J. Torchia, C. Glass, and M. G. Rosenfeld, “Co-activators and co-repressors in the integration of transcriptional responses,” Current Opinion in Cell Biology, vol. 10, no. 3, pp. 373–383, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Li, G. Pascual, and C. K. Glass, “Peroxisome proliferator-activated receptor γ-dependent repression of the inducible nitric oxide synthase gene,” Molecular and Cellular Biology, vol. 20, no. 13, pp. 4699–4707, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. R. M. Thomas and L. H. Sobin, “Gastrointestinal cancer,” Cancer, vol. 75, no. 1, pp. 154–170, 1995. View at Google Scholar · View at Scopus
  22. O. H. Al-Taie, T. Graf, B. Illert et al., “Differential effects of PPARγ activation by the oral antidiabetic agent pioglitazone in Barrett's carcinoma in vitro and in vivo,” Journal of Gastroenterology, vol. 44, no. 9, pp. 919–929, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. P. C. Konturek, A. Nikiforuk, J. Kania, M. Raithel, E. G. Hahn, and S. M. Mühldorfer, “Activation of NFκB represents the central event in the neoplastic progression associated with Barrett's esophagus: a possible link to the inflammation and overexpression of COX-2, PPARγ and growth factors,” Digestive Diseases and Sciences, vol. 49, no. 7-8, pp. 1075–1083, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Hafner, A. Reichle, and T. Vogt, “New indications for established drugs: combined tumor-stroma-targeted cancer therapy with PPARγ agonists, COX-2 inhibitors, mTOR antagonists and metronomic chemotherapy,” Current Cancer Drug Targets, vol. 5, no. 6, pp. 393–419, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. R. E. Schoen, P. F. Pinsky, J. L. Weissfeld et al., “Colorectal-cancer incidence and mortality with screening flexible sigmoidoscopy,” The New England Journal of Medicine, vol. 366, no. 25, pp. 2345–2357, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Hartnett and L. J. Egan, “Inflammation, DNA methylation and colitis-associated cancer,” Carcinogenesis, vol. 33, no. 4, pp. 723–731, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Huin, L. Corriveau, A. Bianchi et al., “Differential expression of peroxisome proliferator-activated receptors (PPARs) in the developing human fetal digestive tract,” The Journal of Histochemistry & Cytochemistry, vol. 48, no. 5, pp. 603–611, 2000. View at Google Scholar · View at Scopus
  28. O. Braissant and W. Wahli, “Differential expression of peroxisome proliferator-activated receptor- α, -β1, and -γ during rat embryonic development,” Endocrinology, vol. 139, no. 6, pp. 2748–2754, 1998. View at Publisher · View at Google Scholar · View at Scopus
  29. S. A. Kliewer, B. M. Forman, B. Blumberg et al., “Differential expression and activation of a family of murine peroxisome proliferator-activated receptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 15, pp. 7355–7359, 1994. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Cuzzocrea, R. di Paola, E. Mazzon et al., “Role of endogenous and exogenous ligands for the peroxisome proliferators activated receptors alpha (PPAR-α) in the development of inflammatory bowel disease in mice,” Laboratory Investigation, vol. 84, no. 12, pp. 1643–1654, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Griffioen, W. T. Steegenga, I. J. M. Ouwerkerk, L. T. C. Peltenburg, A. G. Jochemsen, and P. I. Schrier, “Repression of the minimal HLA-B promoter by c-myc and p53 occurs through independent mechanisms,” Molecular Immunology, vol. 35, no. 13, pp. 829–835, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. J. D. Watson, S. K. Oster, M. Shago, F. Khosravi, and L. Z. Penn, “Identifying genes regulated in a Myc-dependent manner,” Journal of Biological Chemistry, vol. 277, no. 40, pp. 36921–36930, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Varet, L. Vincent, P. Mirshahi et al., “Fenofibrate inhibits angiogenesis in vitro and in vivo,” Cellular and Molecular Life Sciences, vol. 60, no. 4, pp. 810–819, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Kasai, K. Miyauchi, T. Yokoyama, K. Aihara, and H. Daida, “Efficacy of peroxisome proliferative activated receptor (PPAR)-α ligands, fenofibrate, on intimal hyperplasia and constrictive remodeling after coronary angioplasty in porcine models,” Atherosclerosis, vol. 188, no. 2, pp. 274–280, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Pozzi and J. H. Capdevila, “PPARα ligands as antitumorigenic and antiangiogenic agents,” PPAR Research, vol. 2008, Article ID 906542, 8 pages, 2008. View at Publisher · View at Google Scholar
  36. G. Martinasso, M. Oraldi, A. Trombetta et al., “Involvement of PPARs in cell proliferation and apoptosis in human colon cancer specimens and in normal and cancer cell lines,” PPAR Research, vol. 2007, Article ID 93416, 9 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. F. Gizard, C. Amant, O. Barbier et al., “PPARα inhibits vascular smooth muscle cell proliferation underlying intimal hyperplasia by inducing the tumor suppressor p16INK4a,” The Journal of Clinical Investigation, vol. 115, no. 11, pp. 3228–3238, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. P. M. Barger, A. C. Browning, A. N. Garner, and D. P. Kelly, “p38 mitogen-activated protein kinase activates peroxisome proliferator-activated receptor α: a potential role in the cardiac metabolic stress response,” Journal of Biological Chemistry, vol. 276, no. 48, pp. 44495–44501, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. K. A. Burns and J. P. Vanden Heuvel, “Modulation of PPAR activity via phosphorylation,” Biochimica et Biophysica Acta, vol. 1771, no. 8, pp. 952–960, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. L. Riccardi, E. Mazzon, S. Bruscoli et al., “Peroxisome proliferator-activated receptor-α modulates the anti-inflammatory effect of glucocorticoids in a model of inflammatory bowel disease in mice,” Shock, vol. 31, no. 3, pp. 308–316, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. L. A. Moraes, L. Piqueras, and D. Bishop-Bailey, “Peroxisome proliferator-activated receptors and inflammation,” Pharmacology and Therapeutics, vol. 110, no. 3, pp. 371–385, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. S. R. Pyper, N. Viswakarma, S. Yu, and J. K. Reddy, “PPARα: energy combustion, hypolipidemia, inflammation and cancer,” Nuclear receptor signaling, vol. 8, article e002, 2010. View at Google Scholar · View at Scopus
  43. M. Mutoh, N. Niho, and K. Wakabayashi, “Concomitant suppression of hyperlipidemia and intestinal polyp formation by increasing lipoprotein lipase activity in Apc-deficient mice,” Biological chemistry, vol. 387, no. 4, pp. 381–385, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. M. W. Matthiessen, G. Pedersen, T. Albrektsen, S. Adamsen, J. Fleckner, and J. Brynskov, “Peroxisome proliferator-activated receptor expression and activation in normal human colonic epithelial cells and tubular adenomas,” Scandinavian Journal of Gastroenterology, vol. 40, no. 2, pp. 198–205, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. C. W. Wu, J. Yu, and J. J. Y. Sung, “Peroxisome proliferator-activated receptor δ and gastric cancer,” Oncology Reports, vol. 22, no. 3, pp. 451–457, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. J. M. Peters, H. E. Hollingshead, and F. J. Gonzalez, “Role of peroxisome-proliferator-activated receptor β/δ (PPARβ/δ) in gastrointestinal tract function and disease,” Clinical Science, vol. 115, no. 3-4, pp. 107–127, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. F. Varnat, B. B. Heggeler, P. Grisel et al., “PPARβ/δ regulates paneth cell differentiation via controlling the hedgehog signaling pathway,” Gastroenterology, vol. 131, no. 2, pp. 538–553, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. P. Escher, O. Braissant, S. Basu-Modak, L. Michalik, W. Wahli, and B. Desvergne, “Rat PPARs: quantitative analysis in adult rat tissues and regulation in fasting and refeeding,” Endocrinology, vol. 142, no. 10, pp. 4195–4202, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. H. E. Hollingshead, K. Morimura, M. Adachi et al., “PPARβ/δ protects against experimental colitis through a ligand-independent mechanism,” Digestive Diseases and Sciences, vol. 52, no. 11, pp. 2912–2919, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. O. Takayama, H. Yamamoto, B. Damdinsuren et al., “Expression of PPARδ in multistage carcinogenesis of the colorectum: implications of malignant cancer morphology,” British Journal of Cancer, vol. 95, no. 7, pp. 889–895, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. T. C. He, T. A. Chan, B. Vogelstein, and K. W. Kinzler, “PPARδ is an APC-regulated target of nonsteroidal anti-inflammatory drugs,” Cell, vol. 99, no. 3, pp. 335–345, 1999. View at Publisher · View at Google Scholar · View at Scopus
  52. J. Shao, H. Sheng, and R. N. DuBois, “Peroxisome proliferator-activated receptors modulate K-Ras-mediated transformation of intestinal epithelial cells,” Cancer Research, vol. 62, no. 11, pp. 3282–3288, 2002. View at Google Scholar · View at Scopus
  53. T. C. He, A. B. Sparks, C. Rago et al., “Identification of c-MYC as a target of the APC pathway,” Science, vol. 281, no. 5382, pp. 1509–1512, 1998. View at Publisher · View at Google Scholar · View at Scopus
  54. W. Wang, R. Wang, Z. Zhang, D. Li, and Y. Yu, “Enhanced PPAR-γ expression may correlate with the development of Barrett's esophagus and esophageal adenocarcinoma,” Oncology Research, vol. 19, no. 3-4, pp. 141–147, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Naito, T. Takagi, and T. Yoshikawa, “Gastrointestinal cytoprotection by PPARγ ligands,” PPAR Research, vol. 2010, Article ID 108632, 8 pages, 2010. View at Google Scholar
  56. C. Tselepis, I. Perry, C. Dawson et al., “Tumour necrosis factor-α in Barrett's oesophagus: a potential novel mechanism of action,” Oncogene, vol. 21, no. 39, pp. 6071–6081, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. M. M. M. Abdel-Latif, J. O'Riordan, H. J. Windle et al., “NF-κB activation in esophageal adenocarcinoma: relationship to Barrett's metaplasia, survival, and response to neoadjuvant chemoradiotherapy,” Annals of Surgery, vol. 239, no. 4, pp. 491–500, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. H. Sato, S. Ishihara, K. Kawashima et al., “Expression of peroxisome proliferator-activated receptor (PPAR)γ in gastric cancer and inhibitory effects of PPARγ agonists,” British Journal of Cancer, vol. 83, no. 10, pp. 1394–1400, 2000. View at Google Scholar · View at Scopus
  59. S. Kitamura, Y. Miyazaki, S. Hiraoka et al., “PPARγ inhibits the expression of c-MET in human gastric cancer cells through the suppression of Ets,” Biochemical and Biophysical Research Communications, vol. 265, no. 2, pp. 453–456, 1999. View at Publisher · View at Google Scholar · View at Scopus
  60. C. Grommes, G. E. Landreth, and M. T. Heneka, “Antineoplastic effects of peroxisome proliferator-activated receptor γ agonists,” Lancet Oncology, vol. 5, no. 7, pp. 419–429, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. S. H. Liu, C. C. Shen, Y. C. Yi et al., “Honokiol inhibits gastric tumourigenesis by activation of 15-lipoxygenase-1 and consequent inhibition of peroxisome proliferator-activated receptor-γ and COX-2-dependent signals,” British Journal of Pharmacology, vol. 160, no. 8, pp. 1963–1972, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Rotte, A. F. MacK, M. Bhandaru et al., “Pioglitazone induced gastric acid secretion,” Cellular Physiology and Biochemistry, vol. 24, no. 3-4, pp. 193–200, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. J. Lu, K. Imamura, S. Nomura et al., “Chemopreventive effect of peroxisome proliferator-activated receptor γ on gastric carcinogenesis in mice,” Cancer Research, vol. 65, no. 11, pp. 4769–4774, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. E. Saez, P. Tontonoz, M. C. Nelson et al., “Activators of the nuclear receptor PPARγ enhance colon polyp formation,” Nature Medicine, vol. 4, no. 9, pp. 1058–1061, 1998. View at Publisher · View at Google Scholar · View at Scopus
  65. P. Sarraf, E. Mueller, D. Jones et al., “Differentiation and reversal of malignant changes in colon cancer through PPARγ,” Nature Medicine, vol. 4, no. 9, pp. 1046–1052, 1998. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Drori, G. D. Girnun, L. Tou et al., “Hic-5 regulates an epithelial program mediated by PPARγ,” Genes and Development, vol. 19, no. 3, pp. 362–375, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. W. Su, C. R. Bush, B. M. Necela et al., “Differential expression, distribution, and function of PPAR-γ in the proximal and distal colon,” Physiological Genomics, vol. 30, no. 3, pp. 342–353, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. N. Niho, M. Takahashi, Y. Shoji et al., “Dose-dependent suppression of hyperlipidemia and intestinal polyp formation in Min mice by pioglitazone, a PPARγ ligand,” Cancer Science, vol. 94, no. 11, pp. 960–964, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. L. Sabatino, A. Fucci, M. Pancione, and V. Colantuoni, “PPARG epigenetic deregulation and Its role in colorectal tumorigenesis,” PPAR Research, vol. 2012, Article ID 687492, 12 pages, 2012. View at Publisher · View at Google Scholar
  70. P. Sarraf, E. Mueller, W. M. Smith et al., “Loss-of-function mutations in PPARγ associated with human colon cancer,” Molecular Cell, vol. 3, no. 6, pp. 799–804, 1999. View at Publisher · View at Google Scholar · View at Scopus
  71. T. Ikezoe, C. W. Miller, S. Kawano et al., “Mutational analysis of the peroxisome proliferator-activated receptor γ in human malignancies,” Cancer Research, vol. 61, no. 13, pp. 5307–5310, 2001. View at Google Scholar · View at Scopus
  72. E. Burgermeister and R. Seger, “MAPK kinases as nucleo-cytoplasmic shuttles for PPARγ,” Cell Cycle, vol. 6, no. 13, pp. 1539–1548, 2007. View at Google Scholar · View at Scopus
  73. T. M. Garcia-Bates, G. M. Lehmann, P. J. Simpson-Haidaris, S. H. Bernstein, P. J. Sime, and R. P. Phipps, “Role of peroxisome proliferator-activated receptor gamma and its ligands in the treatment of hematological malignancies,” PPAR Research, vol. 2008, Article ID 834612, 18 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. E. A. Thompson, “PPARγ physiology and pathology in gastrointestinal epithelial cells,” Molecules and Cells, vol. 24, no. 2, pp. 167–176, 2007. View at Google Scholar · View at Scopus
  75. M. Pancione, N. Forte, L. Sabatino et al., “Reduced β-catenin and peroxisome proliferator-activated receptor-γ expression levels are associated with colorectal cancer metastatic progression: correlation with tumor-associated macrophages, cyclooxygenase 2, and patient outcome,” Human Pathology, vol. 40, no. 5, pp. 714–725, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Pancione, L. Sabatino, A. Fucci et al., “Epigenetic silencing of peroxisome proliferator- activated receptor γ is a biomarker for colorectal cancer progression and adverse patients' outcome,” PLoS One, vol. 5, no. 12, Article ID e14229, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. L. Sabatino, A. Fucci, M. Pancione et al., “UHRF1 coordinates peroxisome proliferator activated receptor gamma (PPARG) epigenetic silencing and mediates colorectal cancer progression,” Oncogene. In press. View at Publisher · View at Google Scholar · View at Scopus
  78. S. Ogino, K. Shima, Y. Baba et al., “Colorectal cancer expression of peroxisome proliferator-activated receptor γ (PPARG, PPARgamma) is associated with good prognosis,” Gastroenterology, vol. 136, no. 4, pp. 1242–1250, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. J. K. Yamamoto-Furusho, A. Peñaloza-Coronel, F. Sánchez-Muñoz, R. Barreto-Zuñiga, and A. Dominguez-Lopez, “Peroxisome proliferator-activated receptor-gamma (PPAR-γ) expression is downregulated in patients with active ulcerative colitis,” Inflammatory Bowel Diseases, vol. 17, no. 2, pp. 680–681, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. Z.-F. Zhang, N. Yang, G. Zhao, L. Zhu, and L.-X. Wang, “Association between the Pro12Ala polymorphism of peroxisome proliferator-activated receptor gamma 2 and inflammatory bowel disease: a meta-analysis,” PLoS One, vol. 7, no. 1, Article ID e30551, 2012. View at Publisher · View at Google Scholar · View at Scopus
  81. V. Andersen, J. Christensen, A. Ernst et al., “Polymorphisms in NF-κB, PXR, LXR, PPARγ and risk of infammatory bowel disease,” World Journal of Gastroenterology, vol. 17, no. 2, pp. 197–206, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. L. Dubuquoy, C. Rousseaux, X. Thuru et al., “PPARγ as a new therapeutic target in inflammatory bowel diseases,” Gut, vol. 55, no. 9, pp. 1341–1349, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. A. M. W. Turner and K. V. Morris, “Controlling transcription with noncoding RNAs in mammalian cells,” BioTechniques, vol. 48, no. 6, pp. 9–16, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. G. Stefani and F. J. Slack, “Small non-coding RNAs in animal development,” Nature Reviews Molecular Cell Biology, vol. 9, no. 3, pp. 219–230, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. W. Filipowicz, S. N. Bhattacharyya, and N. Sonenberg, “Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight?” Nature Reviews Genetics, vol. 9, no. 2, pp. 102–114, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. R. Garzon, G. A. Calin, and C. M. Croce, “MicroRNAs in cancer,” Annual Review of Medicine, vol. 60, pp. 167–179, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. V. A. Krutovskikh and Z. Herceg, “Oncogenic microRNAs (OncomiRs) as a new class of cancer biomarkers,” BioEssays, vol. 32, no. 10, pp. 894–904, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. K. Kida, M. Nakajima, T. Mohri et al., “PPARα is regulated by miR-21 and miR-27b in human liver,” Pharmaceutical Research, vol. 28, no. 10, pp. 2467–2476, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. J. Zhou, K.-C. Wang, W. Wu et al., “MicroRNA-21 targets peroxisome proliferators-activated receptor-α in an autoregulatory loop to modulate flow-induced endothelial inflammation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 25, pp. 10355–10360, 2011. View at Publisher · View at Google Scholar · View at Scopus
  90. L. Zheng, G. C. Lv, J. Sheng, and Y. D. Yang, “Effect of miRNA-10b in regulating cellular steatosis level by targeting PPAR-α expression, a novel mechanism for the pathogenesis of NAFLD,” Journal of Gastroenterology and Hepatology, vol. 25, no. 1, pp. 156–163, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. J. L. Tong, C. P. Zhang, F. Nie et al., “MicroRNA 506 regulates expression of PPAR alpha in hydroxycamptothecin-resistant human colon cancer cells,” FEBS Letters, vol. 585, no. 22, pp. 3560–3568, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. C. Jennewein, A. von Knethen, T. Schmid, and B. Brüne, “MicroRNA-27b contributes to lipopolysaccharide-mediated peroxisome proliferator-activated receptor γ (PPARγ) mRNA destabilization,” Journal of Biological Chemistry, vol. 285, no. 16, pp. 11846–11853, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. M. Karbiener, C. Fischer, S. Nowitsch et al., “microRNA miR-27b impairs human adipocyte differentiation and targets PPARγ,” Biochemical and Biophysical Research Communications, vol. 390, no. 2, pp. 247–251, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. S. Y. Kim, A. Y. Kim, H. W. Lee et al., “miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARγ expression,” Biochemical and Biophysical Research Communications, vol. 392, no. 3, pp. 323–328, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. J.-J. Lee, A. Drakaki, D. Iliopoulos, and K. Struhl, “MiR-27b targets PPARγ toinhibit growth, tumor progression and the inflammatory response in neuroblastoma cells,” Oncogene. In press. View at Publisher · View at Google Scholar · View at Scopus
  96. E. K. Lee, M. J. Lee, K. Abdelmohsen et al., “miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor γ expression,” Molecular and Cellular Biology, vol. 31, no. 4, pp. 626–638, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. J. Wang, Y. Song, Y. Zhang et al., “Cardiomyocyte overexpression of miR-27b induces cardiac hypertrophy and dysfunction in mice,” Cell Research, vol. 22, no. 3, pp. 516–527, 2012. View at Publisher · View at Google Scholar · View at Scopus
  98. D. Gatfield, G. Le Martelot, C. E. Vejnar et al., “Integration of microRNA miR-122 in hepatic circadian gene expression,” Genes and Development, vol. 23, no. 11, pp. 1313–1326, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. R. J. A. H. Eendebak, P. J. Lucassen, and C. P. Fitzsimons, “Nuclear receptors and microRNAs: Who regulates the regulators in neural stem cells?” FEBS Letters, vol. 585, no. 5, pp. 717–722, 2011. View at Publisher · View at Google Scholar · View at Scopus
  100. X. Wang, X. Song, C. K. Glass, and M. G. Rosenfeld, “The long arm of long noncoding RNAs: roles as sensors regulating gene transcriptional programs,” Cold Spring Harbor Perspectives in Biology, vol. 3, no. 1, article a003756, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. L. Nie, H.-J. Wu, J.-M. Hsu et al., “Long non-coding RNAs: versatile master regulators of gene expression and crucial players in cancer,” American Journal of Translational Research, vol. 4, no. 2, pp. 127–150, 2012. View at Google Scholar · View at Scopus
  102. B. Xu, I. Gerin, H. Miao et al., “Multiple roles for the non-coding RNA SRA in regulation of adipogenesis and insulin sensitivity,” PLoS One, vol. 5, no. 12, Article ID e14199, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. T. Kino, D. E. Hurt, T. Ichijo, N. Nader, and G. P. Chrousos, “Noncoding RNA Gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor,” Science Signaling, vol. 3, no. 107, p. ra8, 2010. View at Publisher · View at Google Scholar · View at Scopus