Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2012, Article ID 256874, 6 pages
http://dx.doi.org/10.1155/2012/256874
Review Article

PPARγ as a Potential Target to Treat Airway Mucus Hypersecretion in Chronic Airway Inflammatory Diseases

Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China

Received 13 January 2012; Revised 19 March 2012; Accepted 8 May 2012

Academic Editor: Virender Rehan

Copyright © 2012 Yongchun Shen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. V. Fahy and B. F. Dickey, “Medical progress: airway mucus function and dysfunction,” New England Journal of Medicine, vol. 363, no. 23, pp. 2233–2247, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Q. Wen and Y. C. Shen, “Expectorant therapy revisited in chronic obstructive pulmonary disease,” Chinese Journal of Tuberculosis and Respiratory Diseases, vol. 34, no. 4, pp. 243–245, 2011. View at Google Scholar
  3. J. Berger and D. E. Moller, “The mechanisms of action of PPARs,” Annual Review of Medicine, vol. 53, pp. 409–435, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. M. G. Belvisi and J. A. Mitchell, “Targeting PPAR receptors in the airway for the treatment of inflammatory lung disease,” British Journal of Pharmacology, vol. 158, no. 4, pp. 994–1003, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. J. E. Ward and X. Tan, “Peroxisome proliferator activated receptor ligands as regulators of airway inflammation and remodelling in chronic lung disease,” PPAR Research, vol. 2007, Article ID 14983, 12 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. A. H. Remels, H. R. Gosker, P. Schrauwen, R. C. Langen, and A. M. Schols, “Peroxisome proliferator-activated receptors: a therapeutic target in COPD?” European Respiratory Journal, vol. 31, no. 3, pp. 502–508, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. H. F. Lakatos, T. H. Thatcher, R. M. Kottmann, T. M. Garcia, R. P. Phipps, and P. J. Sime, “The role of PPARs in lung fibrosis,” PPAR Research, vol. 2007, Article ID 71323, 10 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. R. E. Nisbet, R. L. Sutliff, and C. M. Hart, “The role of peroxisome proliferator-activated receptors in pulmonary vascular disease,” PPAR Research, vol. 2007, Article ID 18797, 10 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Di Paola and S. Cuzzocrea, “Peroxisome proliferator-activated receptors and acute lung injury,” PPAR Research, vol. 2007, Article ID 63745, 8 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. V. G. Keshamouni, S. Han, and J. Roman, “Peroxisome proliferator-activated receptors in lung cancer,” PPAR Research, vol. 2007, Article ID 90289, 10 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. M. G. Belvisi, D. J. Hele, and M. A. Birrell, “Peroxisome proliferator-activated receptor gamma agonists as therapy for chronic airway inflammation,” European Journal of Pharmacology, vol. 533, no. 1–3, pp. 101–109, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. D. F. Rogers, “Airway goblet cells: responsive and adaptable frontline defenders,” European Respiratory Journal, vol. 7, no. 9, pp. 1690–1706, 1994. View at Google Scholar · View at Scopus
  13. S. Sethi and T. F. Murphy, “Infection in the pathogenesis and course of chronic obstructive pulmonary disease,” New England Journal of Medicine, vol. 359, no. 22, pp. 2355–2365, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. F. E. Speizer, M. E. Fay, D. W. Dockery, and B. G. Ferris, “Chronic obstructive pulmonary disease mortality in six U.S. cities,” American Review of Respiratory Disease, vol. 140, no. 3, pp. S49–S55, 1989. View at Google Scholar · View at Scopus
  15. J. Vestbo, E. Prescott, P. Lange et al., “Association of chronic mucus hypersecretion with FEV1 decline and chronic obstructive pulmonary disease morbidity,” American Journal of Respiratory and Critical Care Medicine, vol. 153, no. 5, pp. 1530–1535, 1996. View at Google Scholar · View at Scopus
  16. P. R. Burgel, P. Nesme-Meyer, P. Chanez et al., “Cough and sputum production are associated with frequent exacerbations and hospitalizations in COPD subjects,” Chest, vol. 135, no. 4, pp. 975–982, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. R. De Marco, S. Accordini, I. Cerveri et al., “Incidence of chronic obstructive pulmonary disease in a cohort of young adults according to the presence of chronic cough and phlegm,” American Journal of Respiratory and Critical Care Medicine, vol. 175, no. 1, pp. 32–39, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Kohansal, P. Martinez-Camblor, A. Agustí, A. Sonia Buist, D. M. Mannino, and J. B. Soriano, “The natural history of chronic airflow obstruction revisited: an analysis of the Framingham Offspring Cohort,” American Journal of Respiratory and Critical Care Medicine, vol. 180, no. 1, pp. 3–10, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. L. M. Kuyper, P. D. Paré, J. C. Hogg et al., “Characterization of airway plugging in fatal asthma,” American Journal of Medicine, vol. 115, no. 1, pp. 6–11, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. V. Siroux, A. Boudier, J. Bousquet et al., “Phenotypic determinants of uncontrolled asthma,” Journal of Allergy and Clinical Immunology, vol. 124, no. 4, pp. 681.e3–687.e3, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. M. O. Henke and F. Ratjen, “Mucolytics in cystic fibrosis,” Paediatric Respiratory Reviews, vol. 8, no. 1, pp. 24–29, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. T. K. Baginski, K. Dabbagh, C. Satjawatcharaphong, and D. C. Swinney, “Cigarette smoke synergistically enhances respiratory mucin induction by proinflammatory stimuli,” American Journal of Respiratory Cell and Molecular Biology, vol. 35, no. 2, pp. 165–174, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Arai, M. Kondo, T. Izumo, J. Tamaoki, and A. Nagai, “Inhibition of neutrophil elastase-induced goblet cell metaplasia by tiotropium in mice,” European Respiratory Journal, vol. 35, no. 5, pp. 1164–1171, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. J. D. Klinger, B. Tandler, C. M. Liedtke, and T. F. Boat, “Proteinases of Pseudomonas aeruginosa evoke mucin release by tracheal epithelium,” Journal of Clinical Investigation, vol. 74, no. 5, pp. 1669–1678, 1984. View at Google Scholar · View at Scopus
  25. J. M. Lora, D. M. Zhang, S. M. Liao et al., “Tumor necrosis factor-α triggers mucus production in airway epithelium through an IκB kinase β-dependent mechanism,” Journal of Biological Chemistry, vol. 280, no. 43, pp. 36510–36517, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Fujisawa, S. Velichko, P. Thai, L. Y. Hung, F. Huang, and R. Wu, “Regulation of airway MUC5AC expression by IL-1β and IL-17A; the NF-κB paradigm,” Journal of Immunology, vol. 183, no. 10, pp. 6236–6243, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Chen, P. Thai, Y. H. Zhao, Y. S. Ho, M. M. DeSouza, and R. Wu, “Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop,” Journal of Biological Chemistry, vol. 278, no. 19, pp. 17036–17043, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. M. V. Bautista, Y. Chen, V. S. Ivanova, M. K. Rahimi, A. M. Watson, and M. C. Rose, “IL-8 regulates mucin gene expression at the posttranscriptional level in lung epithelial cells,” Journal of Immunology, vol. 183, no. 3, pp. 2159–2166, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Zhert, W. P. Sung, L. T. Nguyenvu et al., “IL-13 and epidermal growth factor receptor have critical but distinct roles in epithelial cell mucin production,” American Journal of Respiratory Cell and Molecular Biology, vol. 36, no. 2, pp. 244–253, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. C. M. Evans and J. S. Koo, “Airway mucus: the good, the bad, the sticky,” Pharmacology and Therapeutics, vol. 121, no. 3, pp. 332–348, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Decramer and W. Janssens, “Mucoactive therapy in copd,” European Respiratory Review, vol. 19, no. 116, pp. 134–140, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. M. G. Belvisi and D. J. Hele, “Peroxisome proliferator-activated receptors as novel targets in lung disease,” Chest, vol. 134, no. 1, pp. 152–157, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. D. M. Simon, M. C. Arikan, S. Srisuma et al., “Epithelial cell PPARγ is an endogenous regulator of normal lung maturation and maintenance,” Proceedings of the American Thoracic Society, vol. 3, no. 6, pp. 510–511, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Asada, S. Sasaki, T. Suda, K. Chida, and H. Nakamura, “Antiinflammatory roles of peroxisome proliferator-activated receptor γ in human alveolar macrophages,” American Journal of Respiratory and Critical Care Medicine, vol. 169, no. 2, pp. 195–200, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Woerly, K. Honda, M. Loyens et al., “Peroxisome proliferator-activated receptors α and γ down-regulate allergic inflammation and eosinophil activation,” Journal of Experimental Medicine, vol. 198, no. 3, pp. 411–421, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. X. Y. Yang, L. H. Wang, T. Chen et al., “Activation of human T lymphocytes is inhibited by peroxisome proliferator-activated receptor γ (PPARγ) agonists. PPARγ co-association with transcription factor NFAT,” Journal of Biological Chemistry, vol. 275, no. 7, pp. 4541–4544, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Chinetti, S. Griglio, M. Antonucci et al., “Activation of proliferator-activated receptors α and γ induces apoptosis of human monocyte-derived macrophages,” Journal of Biological Chemistry, vol. 273, no. 40, pp. 25573–25580, 1998. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Faveeuw, S. Fougeray, V. Angeli et al., “Peroxisome proliferator-activated receptor γ activators inhibit interleukin-12 production in murine dendritic cells,” FEBS Letters, vol. 486, no. 3, pp. 261–266, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Li, A. Dai, R. Hu, L. Zhu, and S. Tan, “Positive correlation between PPARγ/PGC-1α and γ-GCS in lungs of rats and patients with chronic obstructive pulmonary disease,” Acta Biochimica et Biophysica Sinica, vol. 42, no. 9, pp. 603–614, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Perez, A. M. Van Heeckeren, D. Nichols, S. Gupta, J. F. Eastman, and P. B. Davis, “Peroxisome proliferator-activated receptor-γ in cystic fibrosis lung epithelium,” American Journal of Physiology, vol. 295, no. 2, pp. L303–L313, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Kobayashi, M. J. Thomassen, T. Rambasek et al., “An inverse relationship between peroxisome proliferator-activated receptor γ and allergic airway inflammation in an allergen challenge model,” Annals of Allergy, Asthma and Immunology, vol. 95, no. 5, pp. 468–473, 2005. View at Google Scholar · View at Scopus
  42. A. Trifilieff, A. Bench, M. Hanley, D. Bayley, E. Campbell, and P. Whittaker, “PPAR-α and -γ but not -δ agonists inhibit airway inflammation in a murine model of asthma: in vitro evidence for an NF-κB-independent effect,” British Journal of Pharmacology, vol. 139, no. 1, pp. 163–171, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. K. S. Lee, S. J. Park, P. H. Hwang et al., “PPAR-gamma modulates allergic inflammation through up-regulation of PTEN,” FASEB Journal, vol. 19, no. 8, pp. 1033–1035, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. S. Park, E. P. Lillehoj, K. Kato, C. S. Park, and K. C. Kim, “PPARγ inhibits airway epithelial cell inflammatory response through a MUC1-dependent mechanism,” American Journal of Physiology, vol. 302, no. 7, pp. L679–L687, 2012. View at Google Scholar
  45. T. Neri, C. Armani, A. Pegoli et al., “Role of NF-κB and PPAR-γ in lung inflammation induced by monocyte-derived microparticles,” European Respiratory Journal, vol. 37, no. 6, pp. 1494–1502, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. D. S. Straus and C. K. Glass, “Anti-inflammatory actions of PPAR ligands: new insights on cellular and molecular mechanisms,” Trends in Immunology, vol. 28, no. 12, pp. 551–558, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Y. Lee, E. J. Kang, G. Y. Hur et al., “Peroxisome proliferator-activated receptor-γ inhibits cigarette smoke solution-induced mucin production in human airway epithelial (NCI-H292) cells,” American Journal of Physiology, vol. 291, no. 1, pp. L84–L90, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. Q. Wu, D. Jiang, and H. W. Chu, “Cigarette smoke induces growth differentiation factor 15 production in human lung epithelial cells: implication in mucin over-expression,” Innate Immunity. In press. View at Publisher · View at Google Scholar
  49. D. S. Liu, W. J. Liu, L. Chen et al., “Rosiglitazone, a peroxisome proliferator-activated receptor-γ agonist, attenuates acrolein-induced airway mucus hypersecretion in rats,” Toxicology, vol. 260, no. 1–3, pp. 112–119, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. A. A. Imanifooladi, S. Yazdani, and M. R. Nourani, “The role of nuclear factor-κB in inflammatory lung disease,” Inflammation and Allergy, vol. 9, no. 3, pp. 197–205, 2010. View at Google Scholar · View at Scopus
  51. X. M. Ou, Y. L. Feng, F. Q. Wen et al., “Macrolides attenuate mucus hypersecretion in rat airways through inactivation of NF-κB,” Respirology, vol. 13, no. 1, pp. 63–72, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. K. Honda, P. Marquillies, M. Capron, and D. Dombrowicz, “Peroxisome proliferator-activated receptor γ is expressed in airways and inhibits features of airway remodeling in a mouse asthma model,” Journal of Allergy and Clinical Immunology, vol. 113, no. 5, pp. 882–888, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. K. S. Lee, S. J. Park, S. R. Kim et al., “Modulation of airway remodeling and airway inflammation by peroxisome proliferator-activated receptor γ in a murine model of toluene diisocyanate-induced asthma,” Journal of Immunology, vol. 177, no. 8, pp. 5248–5257, 2006. View at Google Scholar · View at Scopus
  54. M. Hetzel, D. Walcher, M. Grüb, H. Bach, V. Hombach, and N. Marx, “Inhibition of MMP-9 expression by PPARγ activators in human bronchial epithelial cells,” Thorax, vol. 58, no. 9, pp. 778–783, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Ren, L. L. Guo, J. Yang et al., “Doxycycline attenuates acrolein-induced mucin production, in part by inhibiting MMP-9,” European Journal of Pharmacology, vol. 650, no. 1, pp. 418–423, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. J. Chen, P. Chen, H. X. Wang et al., “Simvastatin attenuates acrolein-induced mucin production in rats: involvement of the Ras/extracellular signal-regulated kinase pathway,” International Immunopharmacology, vol. 10, no. 6, pp. 685–693, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. Y. Shen, H. Wu, C. Wang et al., “Simvastatin attenuates cardiopulmonary bypass-induced myocardial inflammatory injury in rats by activating peroxisome proliferator-activated receptor γ,” European Journal of Pharmacology, vol. 649, no. 1–3, pp. 255–262, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. C. Mueller, V. Weaver, J. P. Vanden Heuvel, A. August, and M. T. Cantorna, “Peroxisome proliferator-activated receptor γ ligands attenuate immunological symptoms of experimental allergic asthma,” Archives of Biochemistry and Biophysics, vol. 418, no. 2, pp. 186–196, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. J. E. Ward, D. J. Fernandes, C. C. Taylor, J. V. Bonacci, L. Quan, and A. G. Stewart, “The PPARγ ligand, rosiglitazone, reduces airways hyperresponsiveness in a murine model of allergen-induced inflammation,” Pulmonary Pharmacology and Therapeutics, vol. 19, no. 1, pp. 39–46, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. S. E. Nissen and K. Wolski, “Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes,” New England Journal of Medicine, vol. 356, no. 24, pp. 2457–2471, 2007. View at Google Scholar · View at Scopus
  61. I. J. Dahabreh, “Meta-analysis of rare events: an update and sensitivity analysis of cardiovascular events in randomized trials of rosiglitazone,” Clinical Trials, vol. 5, no. 2, pp. 116–120, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. M. B. Drummond, E. C. Dasenbrook, M. W. Pitz, D. J. Murphy, and E. Fan, “Inhaled corticosteroids in patients with stable chronic obstructive pulmonary disease: a systematic review and meta-analysis,” Journal of the American Medical Association, vol. 300, no. 20, pp. 2407–2416, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. R. Balsamo, L. Lanata, and C. G. Egan, “Mucoactive drugs,” European Respiratory Review, vol. 19, no. 116, pp. 127–133, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Spears, I. Donnelly, L. Jolly et al., “Bronchodilatory effect of the PPAR-γ agonist rosiglitazone in smokers with asthma,” Clinical Pharmacology and Therapeutics, vol. 86, no. 1, pp. 49–53, 2009. View at Publisher · View at Google Scholar · View at Scopus