Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2012, Article ID 513865, 12 pages
http://dx.doi.org/10.1155/2012/513865
Review Article

The Case for the Use of PPARγ Agonists as an Adjunctive Therapy for Cerebral Malaria

Sandra A. Rotman Laboratories, McLaughlin-Rotman Centre for Global Health, Toronto General Hospital, University Health Network, 101 College Street, Suite 10-359, Toronto, ON, M5G 1L7, Canada

Received 7 January 2011; Accepted 28 February 2011

Academic Editor: Marion M. Chan

Copyright © 2012 Lena Serghides. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. W. Snow, C. A. Guerra, A. M. Noor, H. Y. Myint, and S. I. Hay, “The global distribution of clinical episodes of Plasmodium falciparum malaria,” Nature, vol. 434, no. 7030, pp. 214–217, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. WHO, World Malaria Report, 2010.
  3. B. Singh, L. K. Sung, A. Matusop et al., “A large focus of naturally acquired Plasmodium knowlesi infections in human beings,” The Lancet, vol. 363, no. 9414, pp. 1017–1024, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. C. C. John, P. Bangirana, J. Byarugaba et al., “Cerebral malaria in children is associated with long-term cognitive impairment,” Pediatrics, vol. 122, no. 1, pp. e92–e99, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. M. J. Boivin, “Effects of early cerebral malaria on cognitive ability in Senegalese children,” Journal of Developmental and Behavioral Pediatrics, vol. 23, no. 5, pp. 353–364, 2002. View at Google Scholar · View at Scopus
  6. M. J. Boivin, P. Bangirana, J. Byarugaba et al., “Cognitive impairment after cerebral malaria in children: a prospective study,” Pediatrics, vol. 119, no. 2, pp. e360–e366, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. A. Dondorp, F. Nosten, K. Stepniewska, N. Day, and N. White, “Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial,” The Lancet, vol. 366, no. 9487, pp. 717–725, 2005. View at Publisher · View at Google Scholar · View at PubMed
  8. A. M. Dondorp, C. I. Fanello, I. C. Hendriksen et al., “Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial,” The Lancet, vol. 376, no. 9753, pp. 1647–1657, 2010. View at Publisher · View at Google Scholar
  9. A. M. Dondorp, F. Nosten, P. Yi et al., “Artemisinin resistance in Plasmodium falciparum malaria,” The New England Journal of Medicine, vol. 361, no. 5, pp. 455–467, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. N. J. White, “Artemisinin resistance—the clock is ticking,” The Lancet, vol. 376, no. 9758, pp. 2051–2052, 2010. View at Publisher · View at Google Scholar
  11. C. C. John, E. Kutamba, K. Mugarura, and R. O. Opoka, “Adjunctive therapy for cerebral malaria and other severe forms of Plasmodium falciparum malaria,” Expert Review of Anti-Infective Therapy, vol. 8, no. 9, pp. 997–1008, 2010. View at Publisher · View at Google Scholar · View at PubMed
  12. T. E. Taylor, W. J. Fu, R. A. Carr et al., “Differentiating the pathologies of cerebral malaria by postmortem parasite counts,” Nature Medicine, vol. 10, no. 2, pp. 143–145, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. A. R. Berendt, D. L. Simmons, J. Tansey, C. I. Newbold, and K. Marsh, “Intercellular adhesion molecule-1 is an endothelial cell adhesion receptor for Plasmodium falciparum,” Nature, vol. 341, no. 6237, pp. 57–59, 1989. View at Google Scholar · View at Scopus
  14. K. Silamut, N. H. Phu, C. Whitty et al., “A quantitative analysis of the microvascular sequestration of malaria parasites in the human brain,” American Journal of Pathology, vol. 155, no. 2, pp. 395–410, 1999. View at Google Scholar · View at Scopus
  15. G. D. H. Turner, H. Morrison, M. Jones et al., “An immunohistochemical study of the pathology of fatal malaria: evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration,” American Journal of Pathology, vol. 145, no. 5, pp. 1057–1069, 1994. View at Google Scholar · View at Scopus
  16. A. Craig, D. Fernandez-Reyes, M. Mesri et al., “A functional analysis of a natural variant of intercellular adhesion molecule-1 (ICAM-1(Kilifi)),” Human Molecular Genetics, vol. 9, no. 4, pp. 525–530, 2000. View at Google Scholar · View at Scopus
  17. D. Fernandez-Reyes, A. G. Craig, S. A. Kyes et al., “A high frequency African coding polymorphism in the N-terminal domain of ICAM-1 predisposing to cerebral malaria in Kenya,” Human Molecular Genetics, vol. 6, no. 8, pp. 1357–1360, 1997. View at Publisher · View at Google Scholar · View at Scopus
  18. J. W. Barnwell, A. S. Asch, R. L. Nachman, M. Yamaya, M. Aikawa, and P. Ingravallo, “A human 88-kD membrane glycoprotein (CD36) functions in vitro as a receptor for a cytoadherence ligand on Plasmodium falciparum-infected erythrocytes,” Journal of Clinical Investigation, vol. 84, no. 3, pp. 765–772, 1989. View at Google Scholar · View at Scopus
  19. C. F. Ockenhouse, N. N. Tandon, C. Magowan, G. A. Jamieson, and J. D. Chulay, “Identification of a platelet membrane glycoprotein as a falciparum malaria sequestration receptor,” Science, vol. 243, no. 4897, pp. 1469–1471, 1989. View at Google Scholar · View at Scopus
  20. P. Oquendo, E. Hundt, J. Lawler, and B. Seed, “CD36 directly mediates cytoadherence of Plasmodium falciparum parasitized erythrocytes,” Cell, vol. 58, no. 1, pp. 95–101, 1989. View at Google Scholar · View at Scopus
  21. C. Newbold, A. Craig, S. Kyes, A. Rowe, D. Fernandez-Reyes, and T. Fagan, “Cytoadherence, pathogenesis and the infected red cell surface in Plasmodium falciparum,” International Journal for Parasitology, vol. 29, no. 6, pp. 927–937, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Schofield and G. E. Grau, “Immunological processes in malaria pathogenesis,” Nature Reviews Immunology, vol. 5, no. 9, pp. 722–735, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. G. E. Grau, T. E. Taylor, M. E. Molyneux et al., “Tumor necrosis factor and disease severity in children with falciparum malaria,” The New England Journal of Medicine, vol. 320, no. 24, pp. 1586–1591, 1989. View at Google Scholar · View at Scopus
  24. D. Kwiatkowski, A. V. S. Hill, I. Sambou et al., “TNF concentration in fatal cerebral, non-fatal cerebral, and uncomplicated Plasmodium falciparum malaria,” The Lancet, vol. 336, no. 8725, pp. 1201–1204, 1990. View at Publisher · View at Google Scholar · View at Scopus
  25. B. D. Akanmori, J. A. L. Kurtzhals, B. Q. Goka et al., “Distinct patterns of cytokine regulation in discrete clinical forms of Plasmodium falciparum malaria,” European Cytokine Network, vol. 11, no. 1, pp. 113–118, 2000. View at Google Scholar · View at Scopus
  26. H. Brown, G. Turner, S. Rogerson et al., “Cytokine expression in the brain in human cerebral malaria,” Journal of Infectious Diseases, vol. 180, no. 5, pp. 1742–1746, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. W. McGuire, A. V. S. Hill, C. E. M. Allsopp, B. M. Greenwood, and D. Kwjatkowski, “Variation in the TNF-α promoter region associated with susceptibility to cerebral malaria,” Nature, vol. 371, no. 6497, pp. 508–511, 1994. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. J. C. Knight, I. Udalova, A. V. S. Hill et al., “A polymorphism that affects OCT-1 binding to the TNF promoter region is associated with severe malaria,” Nature Genetics, vol. 22, no. 2, pp. 145–150, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. C. C. John, A. Panoskaltsis-Mortari, R. O. Opoka et al., “Cerebrospinal fluid cytokine levels and cognitive impairment in cerebral malaria,” American Journal of Tropical Medicine and Hygiene, vol. 78, no. 2, pp. 198–205, 2008. View at Google Scholar · View at Scopus
  30. C. C. John, R. Opika-Opoka, J. Byarugaba, R. Idro, and M. J. Boivin, “Low levels of RANTES are associated with mortality in children with cerebral malaria,” Journal of Infectious Diseases, vol. 194, no. 6, pp. 837–845, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. C. C. John, G. S. Park, N. Sam-Agudu, R. O. Opoka, and M. J. Boivin, “Elevated serum levels of IL-1ra in children with Plasmodium falciparum malaria are associated with increased severity of disease,” Cytokine, vol. 41, no. 3, pp. 204–208, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. V. Jain, H. B. Armah, J. E. Tongren et al., “Plasma IP-10, apoptotic and angiogenic factors associated with fatal cerebral malaria in India,” Malaria Journal, vol. 7, article 83, 2008. View at Publisher · View at Google Scholar · View at PubMed
  33. K. E. Lyke, R. Burges, Y. Cissoko et al., “Serum levels of the proinflammatory cytokines interleukin-1 beta (IL-1β), IL-6, IL-8, IL-10, tumor necrosis factor alpha, and IL-12(p70) in Malian children with severe Plasmodium falciparum malaria and matched uncomplicated malaria or healthy controls,” Infection and Immunity, vol. 72, no. 10, pp. 5630–5637, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. G. A. Awandare, B. Goka, P. Boeuf et al., “Increased levels of inflammatory mediators in children with severe Plasmodium falciparum malaria with respiratory distress,” Journal of Infectious Diseases, vol. 194, no. 10, pp. 1438–1446, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. D. Faille, F. El-Assaad, M. C. Alessi, T. Fusai, V. Combes, and G. E. R. Grau, “Platelet-endothelial cell interactions in cerebral malaria: the end of a cordial understanding,” Thrombosis and Haemostasis, vol. 102, no. 6, pp. 1093–1102, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. H. Brown, T. T. Hien, N. Day et al., “Evidence of blood-brain barrier dysfunction in human cerebral malaria,” Neuropathology and Applied Neurobiology, vol. 25, no. 4, pp. 331–340, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. A. L. Conroy, H. Phiri, M. Hawkes et al., “Endothelium-based biomarkers are associated with cerebral malaria in Malawian children: a retrospective case-control study,” PLoS ONE, vol. 5, no. 12, Article ID e15291, 2010. View at Publisher · View at Google Scholar · View at PubMed
  38. T. W. Yeo, D. A. Lampah, R. Gitawat et al., “Angiopoietin-2 is associated with decreased endothelial nitric oxide and poor clinical outcome in severe falciparum malaria,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 44, pp. 17097–17102, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. F. E. Lovegrove, N. Tangpukdee, R. O. Opoka et al., “Serum angiopoietin-1 and -2 levels discriminate cerebral malaria from uncomplicated malaria and predict clinical outcome in African children,” PLoS ONE, vol. 4, no. 3, Article ID e4912, 2009. View at Publisher · View at Google Scholar · View at PubMed
  40. T. W. Yeo, D. A. Lampah, E. Tjitra et al., “Relationship of cell-free hemoglobin to impaired endothelial nitric oxide bioavailability and perfusion in severe falciparum malaria,” Journal of Infectious Diseases, vol. 200, no. 10, pp. 1522–1529, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. T. W. Yeo, D. A. Lampah, R. Gitawati et al., “Impaired nitric oxide bioavailability and L-arginine-reversible endothelial dysfunction in adults with falciparum malaria,” Journal of Experimental Medicine, vol. 204, no. 11, pp. 2693–2704, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. G. Turner, “Cerebral malaria,” Brain Pathology, vol. 7, no. 1, pp. 569–582, 1997. View at Google Scholar · View at Scopus
  43. V. A. White, S. Lewallen, N. Beare, K. Kayira, R. A. Carr, and T. E. Taylor, “Correlation of retinal haemorrhages with brain haemorrhages in children dying of cerebral malaria in Malawi,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 95, no. 6, pp. 618–621, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. H. Brown, S. Rogerson, T. Taylor et al., “Blood-brain barrier function in cerebral malaria in Malawian children,” American Journal of Tropical Medicine and Hygiene, vol. 64, no. 3-4, pp. 207–213, 2001. View at Google Scholar · View at Scopus
  45. I. M. Medana, N. P. Day, T. T. Hien et al., “Axonal injury in cerebral malaria,” American Journal of Pathology, vol. 160, no. 2, pp. 655–666, 2002. View at Google Scholar · View at Scopus
  46. I. M. Medana and M. M. Esiri, “Axonal damage: a key predictor of outcome in human CNS diseases,” Brain, vol. 126, no. 3, pp. 515–530, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Idro, N. E. Jenkins, and C. R. J. Newton, “Pathogenesis, clinical features, and neurological outcome of cerebral malaria,” The Lancet Neurology, vol. 4, no. 12, pp. 827–840, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. N. H. Hunt, J. Golenser, T. Chan-Ling et al., “Immunopathogenesis of cerebral malaria,” International Journal for Parasitology, vol. 36, no. 5, pp. 569–582, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. I. A. Clark, L. M. Alleva, and B. Vissel, “The roles of TNF in brain dysfunction and disease,” Pharmacology & Therapeutics, vol. 128, no. 3, pp. 519–548, 2010. View at Google Scholar
  50. N. A. V. Beare, S. P. Harding, T. E. Taylor, S. Lewallen, and M. E. Molyneux, “Perfusion abnormalities in children with cerebral malaria and malarial retinopathy,” Journal of Infectious Diseases, vol. 199, no. 2, pp. 263–271, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. V. A. White, S. Lewallen, N. A. V. Beare, M. E. Molyneux, and T. E. Taylor, “Retinal pathology of pediatric cerebral malaria in Malawi,” PLoS ONE, vol. 4, no. 1, Article ID e4317, 2009. View at Publisher · View at Google Scholar · View at PubMed
  52. S. E.R. Bopp, V. Ramachandran, K. Henson et al., “Genome wide analysis of inbred mouse lines identifies a locus containing ppar-γ as contributing to enhanced malaria survival,” PLoS ONE, vol. 5, no. 5, Article ID e10903, 2010. View at Publisher · View at Google Scholar · View at PubMed
  53. J. Berger and D. E. Moller, “The mechanisms of action of PPARs,” Annual Review of Medicine, vol. 53, pp. 409–435, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. G. Pascual, A. L. Fong, S. Ogawa et al., “A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-γ,” Nature, vol. 437, no. 7059, pp. 759–763, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. S. Giannini, M. Serio, and A. Galli, “Pleiotropic effects of thiazolidinediones: taking a look beyond antidiabetic activity,” Journal of Endocrinological Investigation, vol. 27, no. 10, pp. 982–991, 2004. View at Google Scholar · View at Scopus
  56. M. Lehrke and M. A. Lazar, “The many faces of PPARγ,” Cell, vol. 123, no. 6, pp. 993–999, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. A. Szanto and L. Nagy, “The many faces of PPARγ: anti-inflammatory by any means?” Immunobiology, vol. 213, no. 9-10, pp. 789–803, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. H. Ghanim, S. Dhindsa, A. Aljada, A. Chaudhuri, P. Viswanathan, and P. Dandona, “Low-dose rosiglitazone exerts an antiinflammatory effect with an increase in adiponectin independently of free fatty acid fall and insulin sensitization in obese type 2 diabetics,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 9, pp. 3553–3558, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. D. G. Alleva, E. B. Johnson, F. M. Lio, S. A. Boehme, P. J. Conlon, and P. D. Crowe, “Regulation of murine macrophage proinflammatory and anti-inflammatory cytokines by ligands for peroxisome proliferator-activated receptor-γ: counter-regulatory activity by IFN-γ,” Journal of Leukocyte Biology, vol. 71, no. 4, pp. 677–685, 2002. View at Google Scholar · View at Scopus
  60. S. W. Chung, B. Y. Kang, S. H. Kim et al., “Oxidized low density lipoprotein inhibits interleukin-12 production in lipopolysaccharide-activated mouse macrophages via direct interactions between peroxisome proliferator-activated receptor-γ and nuclear factor-κB,” The Journal of Biological Chemistry, vol. 275, no. 42, pp. 32681–32687, 2000. View at Google Scholar · View at Scopus
  61. C. Jiang, A. T. Ting, and B. Seed, “PPAR-γ agonists inhibit production of monocyte inflammatory cytokines,” Nature, vol. 391, no. 6662, pp. 82–86, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. M. Li, G. Pascual, and C. K. Glass, “Peroxisome proliferator-activated receptor γ-dependent repression of the inducible nitric oxide synthase gene,” Molecular and Cellular Biology, vol. 20, no. 13, pp. 4699–4707, 2000. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Ricote, A. C. Li, T. M. Willson, C. J. Kelly, and C. K. Glass, “The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation,” Nature, vol. 391, no. 6662, pp. 79–82, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. M. Ricote, J. T. Huang, J. S. Welch, and C. K. Glass, “The peroxisome proliferator-activated receptorγ (PPARγ) as a regulator of monocyte/macrophage function,” Journal of Leukocyte Biology, vol. 66, no. 5, pp. 733–739, 1999. View at Google Scholar · View at Scopus
  65. D. S. Straus, G. Pascual, M. Li et al., “15-Deoxy-Δ-prostaglandin J2 inhibits multiple steps in the NF-κB signaling pathway,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 9, pp. 4844–4849, 2000. View at Google Scholar · View at Scopus
  66. J. S. Welch, M. Ricote, T. E. Akiyama, F. J. Gonzalez, and C. K. Glass, “PPARγ and PPARδ negatively regulate specific subsets of lipopolysaccharide and IFN-γ target genes in macrophages,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 11, pp. 6712–6717, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. C. Faveeuw, S. Fougeray, V. Angeli et al., “Peroxisome proliferator-activated receptor γ activators inhibit interleukin-12 production in murine dendritic cells,” FEBS Letters, vol. 486, no. 3, pp. 261–266, 2000. View at Publisher · View at Google Scholar · View at Scopus
  68. P. Gosset, A. S. Charbonnier, P. Delerive et al., “Peroxisome proliferator-activated receptor γ activators affect the maturation of human monocyte-derived dendritic cells,” European Journal of Immunology, vol. 31, no. 10, pp. 2857–2865, 2001. View at Google Scholar · View at Scopus
  69. P. Wang, P. O. Anderson, S. Chen, K. M. Paulsson, H. O. Sjögren, and S. Li, “Inhibition of the transcription factors AP-1 and NF-κB in CD4 T cells by peroxisome proliferator-activated receptor γ ligands,” International Immunopharmacology, vol. 1, no. 4, pp. 803–812, 2001. View at Publisher · View at Google Scholar · View at Scopus
  70. R. B. Clark, D. Bishop-Bailey, T. Estrada-Hernandez, T. Hla, L. Puddington, and S. J. Padula, “The nuclear receptor PPARγ and immunoregulation: PPARγ mediates inhibition of helper T cell responses,” Journal of Immunology, vol. 164, no. 3, pp. 1364–1371, 2000. View at Google Scholar · View at Scopus
  71. R. Cunard, M. Ricote, D. DiCampli et al., “Regulation of cytokine expression by ligands of peroxisome proliferator activated receptors,” Journal of Immunology, vol. 168, no. 6, pp. 2795–2802, 2002. View at Google Scholar · View at Scopus
  72. N. Marx, F. Mach, A. Sauty et al., “Peroxisome proliferator-activated receptor-γ activators inhibit IFN-γ- induced expression of the T cell-active CXC chemokines IP-10, Mig, and I-TAC in human endothelial cells,” Journal of Immunology, vol. 164, no. 12, pp. 6503–6508, 2000. View at Google Scholar · View at Scopus
  73. V. Pasceri, H. D. Wu, J. T. Willerson, and E. T. H. Yeh, “Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-γ activators,” Circulation, vol. 101, no. 3, pp. 235–238, 2000. View at Google Scholar · View at Scopus
  74. P. D. Storer, J. Xu, J. Chavis, and P. D. Drew, “Peroxisome proliferator-activated receptor-gamma agonists inhibit the activation of microglia and astrocytes: implications for multiple sclerosis,” Journal of Neuroimmunology, vol. 161, no. 1-2, pp. 113–122, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. J. D. Ji, H. J. Kim, Y. H. Rho et al., “Inhibition of IL-10-induced STAT3 activation by 15-deoxy-Δ12,14-prostaglandin J,” Rheumatology, vol. 44, no. 8, pp. 983–988, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. E. J. Park, S. Y. Park, E. H. Joe, and I. Jou, “15d-PGJ and rosiglitazone suppress Janus kinase-STAT inflammatory signaling through induction of suppressor of cytokine signaling 1 (SOCS1) and SOCS3 in glia,” The Journal of Biological Chemistry, vol. 278, no. 17, pp. 14747–14752, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. P. D. Drew, J. Xu, and M. K. Racke, “PPAR-γ: therapeutic potential for multiple sclerosis,” PPAR Research, vol. 2008, Article ID 627463, 2008. View at Publisher · View at Google Scholar · View at PubMed
  78. R. Vemuganti, “Therapeutic potential of PPARγ activation in stroke,” PPAR Research, vol. 2008, Article ID 461981, 2008. View at Publisher · View at Google Scholar · View at PubMed
  79. J. J. Bright, S. Kanakasabai, W. Chearwae, and S. Chakraborty, “PPAR regulation of inflammatory signaling in CNS diseases,” PPAR Research, vol. 2008, Article ID 658520, 2008. View at Publisher · View at Google Scholar · View at PubMed
  80. R. Kapadia, J. H. Yi, and R. Vemuganti, “Mechanisms of anti-inflammatory and neuroprotective actions of PPAR-gamma agonists,” Frontiers in Bioscience, vol. 13, no. 5, pp. 1813–1826, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. C. A. Homewood, G. A. Moore, D. C. Warhurst, and E. M. Atkinson, “Purification and some properties of malarial pigment,” Annals of Tropical Medicine and Parasitology, vol. 69, no. 3, pp. 283–287, 1975. View at Google Scholar · View at Scopus
  82. E. Schwarzer, H. Kühn, E. Valente, and P. Arese, “Malaria-parasitized erythrocytes and hemozoin nonenzymatically generate large amounts of hydroxy fatty acids that inhibit monocyte functions,” Blood, vol. 101, no. 2, pp. 722–728, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. S. Pizzimenti, S. Laurora, F. Briatore, C. Ferretti, M. U. Dianzani, and G. Barrera, “Synergistic effect of 4-hydroxynonenal and PPAR ligands in controlling human leukemic cell growth and differentiation,” Free Radical Biology and Medicine, vol. 32, no. 3, pp. 233–245, 2002. View at Publisher · View at Google Scholar · View at Scopus
  84. E. Schwarzer, M. Alessio, D. Ulliers, and P. Arese, “Phagocytosis of the malarial pigment, hemozoin, impairs expression of major histocompatibility complex class II antigen, CD54, and CD11c in human monocytes,” Infection and Immunity, vol. 66, no. 4, pp. 1601–1606, 1998. View at Google Scholar · View at Scopus
  85. D. Taramelli, “The heme moiety of malaria pigment (β-Hematin) mediates the inhibition of nitric oxide and tumor necrosis factor-α production by lipopolysaccharide-stimulated macrophages,” Experimental Parasitology, vol. 81, no. 4, pp. 501–511, 1995. View at Publisher · View at Google Scholar · View at PubMed
  86. P. Deshpande and P. Shastry, “Modulation of cytokine profiles by malaria pigment—Hemozoin: role of IL-10 in suppression of proliferative responses of mitogen stimulated human PBMC,” Cytokine, vol. 28, no. 6, pp. 205–213, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. O. Skorokhod, E. Schwarzer, T. Grune, and P. Arese, “Role of 4-hydroxynonenal in the hemozoin-mediated inhibition of differentiation of human monocytes to dendritic cells induced by GM-CSF/IL-4,” BioFactors, vol. 24, no. 1–4, pp. 283–289, 2005. View at Google Scholar · View at Scopus
  88. O. R. Millington, C. Di Lorenzo, R. S. Phillips, P. Garside, and J. M. Brewer, “Suppression of adaptive immunity to heterologous antigens during Plasmodium infection through hemozoin-induced failure of dendritic cell function,” Journal of Biology, vol. 5, article 5, 2006. View at Publisher · View at Google Scholar · View at PubMed
  89. T. Scorza, S. Magez, L. Brys, and P. De Baetselier, “Hemozoin is a key factor in the induction of malaria-associated immunosuppression,” Parasite Immunology, vol. 21, no. 11, pp. 545–554, 1999. View at Publisher · View at Google Scholar · View at Scopus
  90. O. A. Skorokhod, M. Alessio, B. Mordmüller, P. Arese, and E. Schwarzer, “Hemozoin (malarial pigment) inhibits differentiation and maturation of human monocyte-derived dendritic cells: a peroxisome proliferator-activated receptor-γ-mediated effect,” Journal of Immunology, vol. 173, no. 6, pp. 4066–4074, 2004. View at Google Scholar · View at Scopus
  91. I. D. McGilvray, L. Serghides, A. Kapus, O. D. Rotstein, and K. C. Kain, “Nonopsonic monocyte/macrophage phagocytosis of Plasmodium falciparum-parasitized erythrocytes: a role for CD36 in malarial clearance,” Blood, vol. 96, no. 9, pp. 3231–3240, 2000. View at Google Scholar · View at Scopus
  92. S. N. Patel, L. Serghides, T. G. Smith et al., “CD36 Mediates the Phagocytosis of Plasmodium falciparum-Infected Erythrocytes by Rodent Macrophages,” Journal of Infectious Diseases, vol. 189, no. 2, pp. 204–213, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  93. Z. Su, A. Fortin, P. Gros, and M. M. Stevenson, “Opsonin-independent phagocytosis: an effector mechanism against acute blood-stage Plasmodium chabaudi AS infection,” Journal of Infectious Diseases, vol. 186, no. 9, pp. 1321–1329, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  94. L. Serghides, T. G. Smith, S. N. Patel, and K. C. Kain, “CD36 and malaria: friends or foes?” Trends in Parasitology, vol. 19, no. 10, pp. 461–469, 2003. View at Publisher · View at Google Scholar · View at Scopus
  95. K. Ayi, S. N. Patel, L. Serghides, T. G. Smith, and K. C. Kain, “Nonopsonic phagocytosis of erythrocytes infected with ring-stage Plasmodium falciparum,” Infection and Immunity, vol. 73, no. 4, pp. 2559–2563, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  96. T. G. Smith, L. Serghides, S. N. Patel, M. Febbraio, R. L. Silverstein, and K. C. Kain, “CD36-mediated nonopsonic phagocytosis of erythrocytes infected with stage I and IIA gametocytes of Plasmodium falciparum,” Infection and Immunity, vol. 71, no. 1, pp. 393–400, 2003. View at Publisher · View at Google Scholar · View at Scopus
  97. S. N. Patel, Z. Lu, K. Ayi, L. Serghides, D. C. Gowda, and K. C. Kain, “Disruption of CD36 impairs cytokine response to Plasmodium falciparum glycosylphosphatidylinositol and confers susceptibility to severe and fatal malaria in vivo,” Journal of Immunology, vol. 178, no. 6, pp. 3954–3961, 2007. View at Google Scholar · View at Scopus
  98. L. Serghides and K. C. Kain, “Peroxisome proliferator-activated receptor γ-retinoid X receptor agonists increase CD36-dependent phagocytosis of Plasmodium falciparum-parasitized erythrocytes and decrease malaria-induced TNF-α secretion by monocytes/macrophages,” Journal of Immunology, vol. 166, no. 11, pp. 6742–6748, 2001. View at Google Scholar · View at Scopus
  99. L. K. Erdman, G. Cosio, A. J. Helmers, D. C. Gowda, S. Grinstein, and K. C. Kain, “CD36 and TLR interactions in inflammation and phagocytosis: implications for malaria,” Journal of Immunology, vol. 183, no. 10, pp. 6452–6459, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  100. V. A. Fadok, M. L. Warner, D. L. Bratton, and P. M. Henson, “CD36 is required for phagocytosis of apoptotic cells by human macrophages that use either a phosphatidylserine receptor or the vitronectin receptor (α(V)β3),” Journal of Immunology, vol. 161, no. 11, pp. 6250–6257, 1998. View at Google Scholar
  101. N. Platt, R. P. da Silva, and S. Gordon, “Recognizing death: the phagocytosis of apoptotic cells,” Trends in Cell Biology, vol. 8, no. 9, pp. 365–372, 1998. View at Publisher · View at Google Scholar · View at Scopus
  102. L. Serghides, S. N. Patel, K. Ayi et al., “Rosiglitazone modulates the innate immune response to Plasmodium falciparum infection and improves outcome in experimental cerebral malaria,” Journal of Infectious Diseases, vol. 199, no. 10, pp. 1536–1545, 2009. View at Publisher · View at Google Scholar · View at PubMed
  103. S. Gordon and F. O. Martinez, “Alternative activation of macrophages: mechanism and functions,” Immunity, vol. 32, no. 5, pp. 593–604, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  104. K. Ayi, F. Turrini, A. Piga, and P. Arese, “Enhanced phagocytosis of ring-parasitized mutant erythrocytes: a common mechanism that may explain protection against falciparum malaria in sickle trait and beta-thalassemia trait,” Blood, vol. 104, no. 10, pp. 3364–3371, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  105. T. N. Williams, “Human red blood cell polymorphisms and malaria,” Current Opinion in Microbiology, vol. 9, no. 4, pp. 388–394, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  106. K. Ayi, G. Min-Oo, L. Serghides et al., “Pyruvate kinase deficiency and malaria,” The New England Journal of Medicine, vol. 358, no. 17, pp. 1805–1810, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  107. L. Schofield and F. Hackett, “Signal transduction in host cells by a glycosylphosphatidylinositol toxin of malaria parasites,” Journal of Experimental Medicine, vol. 177, no. 1, pp. 145–153, 1993. View at Publisher · View at Google Scholar · View at Scopus
  108. G. Krishnegowda, A. M. Hajjar, J. Zhu et al., “Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity,” The Journal of Biological Chemistry, vol. 280, no. 9, pp. 8606–8616, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  109. G. Cantini, A. Lombardi, E. Borgogni et al., “Peroxisome-proliferator-activated receptor gamma (PPARγ) is required for modulating endothelial inflammatory response through a nongenomic mechanism,” European Journal of Cell Biology, vol. 89, no. 9, pp. 645–653, 2010. View at Publisher · View at Google Scholar · View at PubMed
  110. M. M. Stevenson and E. M. Riley, “Innate immunity to malaria,” Nature Reviews Immunology, vol. 4, no. 3, pp. 169–180, 2004. View at Google Scholar · View at Scopus
  111. A. K. Boggild, S. Krudsood, S. N. Patel et al., “Use of peroxisome proliferator-activated receptor γ agonists as adjunctive treatment for Plasmodium falciparum malaria: a randomized, double-blind, placebo-controlled trial,” Clinical Infectious Diseases, vol. 49, no. 6, pp. 841–849, 2009. View at Publisher · View at Google Scholar · View at PubMed
  112. A. H. Shankar, B. Genton, R. D. Semba et al., “Effect of vitamin A supplementation on morbidity due to Plasmodium falciparum in young children in Papua New Guinea: a randomised trial,” The Lancet, vol. 354, no. 9174, pp. 203–209, 1999. View at Publisher · View at Google Scholar · View at Scopus
  113. L. Serghides and K. C. Kain, “Mechanism of protection induced by vitamin A in falciparum malaria,” The Lancet, vol. 359, no. 9315, pp. 1404–1406, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  114. N. C. Inestrosa, J. A. Godoy, R. A. Quintanilla, C. S. Koenig, and M. Bronfman, “Peroxisome proliferator-activated receptor γ is expressed in hippocampal neurons and its activation prevents β-amyloid neurodegeneration: role of Wnt signaling,” Experimental Cell Research, vol. 304, no. 1, pp. 91–104, 2005. View at Publisher · View at Google Scholar · View at PubMed
  115. S. H. Ramirez, D. Heilman, B. Morsey, R. Potula, J. Haorah, and Y. Persidsky, “Activation of peroxisome proliferator-activated receptor γ (PPARγ) suppresses rho GTPases in human brain microvascular endothelial cells and inhibits adhesion and transendothelial migration of HIV-1 infected monocytes,” Journal of Immunology, vol. 180, no. 3, pp. 1854–1865, 2008. View at Google Scholar
  116. S. Moreno, S. Farioli-vecchioli, and M. P. Cerù, “Immunolocalization of peroxisome proliferator-activated receptors and retinoid X receptors in the adult rat CNS,” Neuroscience, vol. 123, no. 1, pp. 131–145, 2004. View at Publisher · View at Google Scholar · View at Scopus
  117. W. H.-H. Sheu, H. C. Chuang, S. M. Cheng, M. R. Lee, C. C. Chou, and F. C. Cheng, “Microdialysis combined blood sampling technique for the determination of rosiglitazone and glucose in brain and blood of gerbils subjected to cerebral ischemia,” Journal of Pharmaceutical and Biomedical Analysis, vol. 54, no. 4, pp. 759–764, 2011. View at Publisher · View at Google Scholar · View at PubMed
  118. A. Szklarczyk, M. Stins, E. A. Milward et al., “Glial activation and matrix metalloproteinase release in cerebral malaria,” Journal of Neurovirology, vol. 13, no. 1, pp. 2–10, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  119. C. K. Combs, D. E. Johnson, J. C. Karlo, S. B. Cannady, and G. E. Landreth, “Inflammatory mechanisms in Alzheimer's disease: inhibition of β- amyloid-stimulated proinflammatory responses and neurotoxicity by PPARγ agonists,” Journal of Neuroscience, vol. 20, no. 2, pp. 558–567, 2000. View at Google Scholar
  120. A. Lombardi, G. Cantini, E. Piscitelli et al., “A new mechanism involving ERK contributes to rosiglitazone inhibition of tumor necrosis factor-α and interferon-γ inflammatory effects in human endothelial cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 4, pp. 718–724, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  121. S. Z. Duan, M. G. Usher, and R. M. Mortensen, “Peroxisome proliferator-activated receptor-γ-mediated effects in the vasculature,” Circulation Research, vol. 102, no. 3, pp. 283–294, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  122. M. Joner, A. Farb, QI. Cheng et al., “Pioglitazone inhibits in-stent restenosis in atherosclerotic rabbits by targeting transforming growth factor-β and MCP-1,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 1, pp. 182–189, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  123. N. Marx, G. Sukhova, C. Murphy, P. Libby, and J. Plutzky, “Macrophages in human atheroma contain PPARγ: differentiation-dependent peroxisomal proliferator-activated receptor γ (PPARγ) expression and reduction of MMP-9 activity through PPARγ activation in mononuclear phagocytes in vitro,” American Journal of Pathology, vol. 153, no. 1, pp. 17–23, 1998. View at Google Scholar
  124. C. X. Wang, X. Ding, R. Noor, C. Pegg, C. He, and A. Shuaib, “Rosiglitazone alone or in combination with tissue plasminogen activator improves ischemic brain injury in an embolic model in rats,” Journal of Cerebral Blood Flow and Metabolism, vol. 29, no. 10, pp. 1683–1694, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  125. A. Ferreira, J. Balla, V. Jeney, G. Balla, and M. P. Soares, “A central role for free heme in the pathogenesis of severe malaria: the missing link?” Journal of Molecular Medicine, vol. 86, no. 10, pp. 1097–1111, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  126. R. Medzhitov, “Damage control in host-pathogen interactions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 37, pp. 15525–15526, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  127. M. C. Delmas-Beauvieux, E. Peuchant, M. F. Dumon, M. C. Receveur, M. Le Bras, and M. Clerc, “Relationship between red blood cell antioxidant enzymatic system status and lipoperoxidation during the acute phase of malaria,” Clinical Biochemistry, vol. 28, no. 2, pp. 163–169, 1995. View at Publisher · View at Google Scholar
  128. Z. Bagi, A. Koller, and G. Kaley, “PPARγ activation, by reducing oxidative stress, increases NO bioavailability in coronary arterioles of mice with Type 2 diabetes,” American Journal of Physiology, vol. 286, no. 2, pp. H742–H748, 2004. View at Google Scholar · View at Scopus
  129. I. Inoue, S. -I. Goto, T. Matsunaga et al., “The ligands/activators for peroxisome proliferator-activated receptor α (PPARα) and PPARγ increase Cu2+,Zn2+-superoxide dismutase and decrease p22phox message expressions in primary endothelial cells,” Metabolism, vol. 50, no. 1, pp. 3–11, 2001. View at Publisher · View at Google Scholar
  130. J. Hwang, D. J. Kleinhenz, B. Lassègue, K. K. Griendling, S. Dikalov, and C. M. Hart, “Peroxisome proliferator-activated receptor-γ ligands regulate endothelial membrane superoxide production,” American Journal of Physiology, vol. 288, no. 4, pp. C899–C905, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  131. X. Zhao, R. Strong, J. Zhang et al., “Neuronal PPARγ deficiency increases susceptibility to brain damage after cerebral ischemia,” Journal of Neuroscience, vol. 29, no. 19, pp. 6186–6195, 2009. View at Publisher · View at Google Scholar · View at PubMed
  132. X. Zhao, G. Sun, J. Zhang et al., “Hematoma resolution as a target for intracerebral hemorrhage treatment: role for peroxisome proliferator-activated receptor γ in microglia/macrophages,” Annals of Neurology, vol. 61, no. 4, pp. 352–362, 2007. View at Publisher · View at Google Scholar · View at PubMed
  133. J. Hwang, D. J. Kleinhenz, H. L. Rupnow et al., “The PPARγ ligand, rosiglitazone, reduces vascular oxidative stress and NADPH oxidase expression in diabetic mice,” Vascular Pharmacology, vol. 46, no. 6, pp. 456–462, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  134. C. De Ciuceis, F. Amiri, M. Iglarz, J. S. Cohn, R. M. Touyz, and E. L. Schiffrin, “Synergistic vascular protective effects of combined low doses of PPARα and PPARγ activators in angiotensin II-induced hypertension in rats,” British Journal of Pharmacology, vol. 151, no. 1, pp. 45–53, 2007. View at Publisher · View at Google Scholar · View at PubMed
  135. G. Krönke, A. Kadl, E. Ikonomu et al., “Expression of heme oxygenase-1 in human vascular cells is regulated by peroxisome proliferator-activated receptors,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 6, pp. 1276–1282, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  136. L. E. Otterbein, F. H. Bach, J. Alam et al., “Carbon monoxide has anti-inflammatory effects involving the mitogen- activated protein kinase pathway,” Nature Medicine, vol. 6, no. 4, pp. 422–428, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  137. J. Chen-Roetling, L. Benvenisti-Zarom, and R. F. Regan, “Cultured astrocytes from heme oxygenase-1 knockout mice are more vulnerable to heme-mediated oxidative injury,” Journal of Neuroscience Research, vol. 82, no. 6, pp. 802–810, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  138. A. Pamplona, A. Ferreira, J. Balla et al., “Heme oxygenase-1 and carbon monoxide suppress the pathogenesis of experimental cerebral malaria,” Nature Medicine, vol. 13, no. 6, pp. 703–710, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  139. J. S. Beckman and W. H. Koppenol, “Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly,” American Journal of Physiology, vol. 271, no. 5, pp. C1424–C1437, 1996. View at Google Scholar · View at Scopus
  140. N. M. Anstey, J. B. Weinberg, M. Y. Hassanali et al., “Nitric oxide in Tanzanian children with malaria: inverse relationship between malaria severity and nitric oxide production/nitric oxide synthase type 2 expression,” Journal of Experimental Medicine, vol. 184, no. 2, pp. 557–567, 1996. View at Google Scholar · View at Scopus
  141. I. Gramaglia, P. Sobolewski, D. Meays et al., “Low nitric oxide bioavailability contributes to the genesis of experimental cerebral malaria,” Nature Medicine, vol. 12, no. 12, pp. 1417–1422, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  142. T. W. Yeo, D. A. Lampah, R. Gitawati et al., “Recovery of endothelial function in severe falciparum malaria: relationship with improvement in plasma L-arginine and blood lactate concentrations,” Journal of Infectious Diseases, vol. 198, no. 4, pp. 602–608, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  143. D. Garcia-Santos and J. A. B. Chies, “HO-1 polymorphism as a genetic determinant behind the malaria resistance afforded by haemolytic disorders,” Medical Hypotheses, vol. 74, no. 5, pp. 807–813, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  144. T. Matsumoto, E. Noguchi, T. Kobayashi, and K. Kamata, “Mechanisms underlying the chronic pioglitazone treatment-induced improvement in the impaired endothelium-dependent relaxation seen in aortas from diabetic rats,” Free Radical Biology and Medicine, vol. 42, no. 7, pp. 993–1007, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  145. C. Romera, O. Hurtado, J. Mallolas et al., “Ischemic preconditioning reveals that GLT1/EAAT2 glutamate transporter is a novel PPARγ target gene involved in neuroprotection,” Journal of Cerebral Blood Flow and Metabolism, vol. 27, no. 7, pp. 1327–1338, 2007. View at Publisher · View at Google Scholar · View at PubMed
  146. Y. Wang and Z. H. Qin, “Molecular and cellular mechanisms of excitoxic neuronal death,” Apoptosis, vol. 15, no. 11, pp. 1382–1402, 010. View at Google Scholar
  147. A. S. Miranda, L. B. Vieira, N. Lacerda-Queiroz et al., “Increased levels of glutamate in the central nervous system are associated with behavioral symptoms in experimental malaria,” Brazilian Journal of Medical and Biological Research, vol. 43, no. 12, pp. 1173–1177, 2010. View at Publisher · View at Google Scholar
  148. L. A. Sanni, C. Rae, A. Maitland, R. Stocker, and N. H. Hunt, “Is ischemia involved in the pathogenesis of murine cerebral malaria?” American Journal of Pathology, vol. 159, no. 3, pp. 1105–1112, 2001. View at Google Scholar · View at Scopus
  149. X. Zhao, Z. Ou, J. C. Grotta, N. Waxham, and J. Aronowski, “Peroxisome-proliferator-activated receptor-gamma (PPARγ) activation protects neurons from NMDA excitotoxicity,” Brain Research, vol. 1073-1074, no. 1, pp. 460–469, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  150. S. Uryu, J. Harada, M. Hisamoto, and T. Oda, “Troglitazone inhibits both post-glutamate neurotoxicity and low-potassium-induced apoptosis in cerebellar granule neurons,” Brain Research, vol. 924, no. 2, pp. 229–236, 2002. View at Publisher · View at Google Scholar · View at Scopus
  151. B. García-Bueno, J. R. Caso, B. G. Pérez-Nievas, P. Lorenzo, and J. C. Leza, “Effects of peroxisome proliferator-activated receptor gamma agonists on brain glucose and glutamate transporters after stress in rats,” Neuropsychopharmacology, vol. 32, no. 6, pp. 1251–1260, 2007. View at Publisher · View at Google Scholar · View at PubMed
  152. R. K. Kaundal and S. S. Sharma, “Peroxisome proliferator-activated receptor gamma agonists as neuroprotective agents,” Drug News Perspect, vol. 23, no. 4, pp. 241–256, 2010. View at Google Scholar
  153. S. Sundararajan and G. E. Landreth, “Antiinflammatory properties of PPARγ agonists following ischemia,” Drug News and Perspectives, vol. 17, no. 4, pp. 229–236, 2004. View at Publisher · View at Google Scholar · View at Scopus
  154. S. Sundararajan, J. L. Gamboa, N. A. Victor, E. W. Wanderi, W. D. Lust, and G. E. Landreth, “Peroxisome proliferator-activated receptor-γ ligands reduce inflammation and infarction size in transient focal ischemia,” Neuroscience, vol. 130, no. 3, pp. 685–696, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  155. Y. Zhao, A. Patzer, P. Gohlke, T. Herdegen, and J. Culman, “The intracerebral application of the PPARγ-ligand pioglitazone confers neuroprotection against focal ischaemia in the rat brain,” European Journal of Neuroscience, vol. 22, no. 1, pp. 278–282, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  156. Y. Zhao, A. Patzer, T. Herdegen, P. Gohlke, and J. Culman, “Activation of cerebral peroxisome proliferator-activated receptors gamma promotes neuroprotection by attenuation of neuronal cyclooxygenase-2 overexpression after focal cerebral ischemia in rats,” FASEB Journal, vol. 20, no. 8, pp. 1162–1175, 2006. View at Publisher · View at Google Scholar · View at PubMed
  157. Y. Luo, W. Yin, A. P. Signore et al., “Neuroprotection against focal ischemic brain injury by the peroxisome proliferator-activated receptor-γ agonist rosiglitazone,” Journal of Neurochemistry, vol. 97, no. 2, pp. 435–448, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  158. K. Tureyen, R. Kapadia, K. K. Bowen et al., “Peroxisome proliferator-activated receptor-γ agonists induce neuroprotection following transient focal ischemia in normotensive, normoglycemic as well as hypertensive and type-2 diabetic rodents,” Journal of Neurochemistry, vol. 101, no. 1, pp. 41–56, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  159. Y. Kasahara, A. Taguchi, H. Uno et al., “Telmisartan suppresses cerebral injury in a murine model of transient focal ischemia,” Brain Research, vol. 1340, pp. 70–80, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  160. T. Haraguchi, K. Iwasaki, K. Takasaki et al., “Telmisartan, a partial agonist of peroxisome proliferator-activated receptor γ, improves impairment of spatial memory and hippocampal apoptosis in rats treated with repeated cerebral ischemia,” Brain Research, vol. 1353, pp. 125–132, 2010. View at Publisher · View at Google Scholar · View at PubMed
  161. A. Hyong, V. Jadhav, S. Lee et al., “Rosiglitazone, a PPAR gamma agonist, attenuates inflammation after surgical brain injury in rodents,” Brain Research, vol. 1215, pp. 218–224, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  162. M. Allahtavakoli, A. Shabanzadeh, A. Roohbakhsh, and A. Pourshanazari, “Combination therapy of rosiglitazone, a peroxisome proliferator-activated receptor-γ ligand, and NMDA receptor antagonist (MK-801) on experimental embolic stroke in rats,” Basic and Clinical Pharmacology and Toxicology, vol. 101, no. 5, pp. 309–314, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  163. N. Schintu, L. Frau, M. Ibba et al., “PPAR-gamma-mediated neuroprotection in a chronic mouse model of Parkinson's disease,” European Journal of Neuroscience, vol. 29, no. 5, pp. 954–963, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  164. L. P. Quinn, B. Crook, M. E. Hows et al., “The PPARγ agonist pioglitazone is effective in the MPTP mouse model of Parkinson's disease through inhibition of monoamine oxidase B,” British Journal of Pharmacology, vol. 154, no. 1, pp. 226–233, 2008. View at Publisher · View at Google Scholar · View at PubMed
  165. M. Kiaei, K. Kipiani, J. Chen, N. Y. Calingasan, and M. F. Beal, “Peroxisome proliferator-activated receptor-gamma agonist extends survival in transgenic mouse model of amyotrophic lateral sclerosis,” Experimental Neurology, vol. 191, no. 2, pp. 331–336, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  166. L. Escribano, A. M. Simón, A. Pérez-Mediavilla, P. Salazar-Colocho, J. D. Río, and D. Frechilla, “Rosiglitazone reverses memory decline and hippocampal glucocorticoid receptor down-regulation in an Alzheimer's disease mouse model,” Biochemical and Biophysical Research Communications, vol. 379, no. 2, pp. 406–410, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  167. G. S. Watson, B. A. Cholerton, M. A. Reger et al., “Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study,” American Journal of Geriatric Psychiatry, vol. 13, no. 11, pp. 950–958, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  168. M. E. Risner, A. M. Saunders, J. F. B. Altman et al., “Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer's disease,” Pharmacogenomics Journal, vol. 6, no. 4, pp. 246–254, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  169. C. C. Kaiser, D. K. Shukla, G. T. Stebbins et al., “A pilot test of pioglitazone as an add-on in patients with relapsing remitting multiple sclerosis,” Journal of Neuroimmunology, vol. 211, no. 1-2, pp. 124–130, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  170. J. A. Dormandy, B. Charbonnel, D. J. Eckland et al., “Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial in macroVascular Events): a randomised controlled trial,” The Lancet, vol. 366, no. 9493, pp. 1279–1289, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  171. W. H. W. Tang, “Do thiazolidinediones cause heart failure? A critical review,” Cleveland Clinic Journal of Medicine, vol. 73, no. 4, pp. 390–397, 2006. View at Publisher · View at Google Scholar · View at Scopus
  172. G. A. Diamond, L. Bax, and S. Kaul, “Uncertain effects of rosiglitazone on the risk for myocardial infarction and cardiovascular death,” Annals of Internal Medicine, vol. 147, no. 8, pp. 578–581, 2007. View at Google Scholar · View at Scopus