Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2012 (2012), Article ID 687570, 6 pages
http://dx.doi.org/10.1155/2012/687570
Review Article

The Role of PPARγ in Helicobacter pylori Infection and Gastric Carcinogenesis

Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu 480717, Republic of Korea

Received 29 May 2012; Accepted 16 July 2012

Academic Editor: Valerio Pazienza

Copyright © 2012 Jong-Min Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Michalik, B. Desvergne, and W. Wahli, “Peroxisome-proliferator-activated receptors and cancers: complex stories,” Nature Reviews Cancer, vol. 4, no. 1, pp. 61–70, 2004. View at Google Scholar · View at Scopus
  2. S. Kersten, B. Desvergne, and W. Wahli, “Roles of PPARS in health and disease,” Nature, vol. 405, no. 6785, pp. 421–424, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Tontonoz, E. Hu, and B. M. Spiegelman, “Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor,” Cell, vol. 79, no. 7, pp. 1147–1156, 1994. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Delerive, J. C. Fruchart, and B. Staels, “Peroxisome proliferator-activated receptors in inflammation control,” Journal of Endocrinology, vol. 169, no. 3, pp. 453–459, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. B. M. Forman, P. Tontonoz, J. Chen, R. P. Brun, B. M. Spiegelman, and R. M. Evans, “15-Deoxy-Δ12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPARγ,” Cell, vol. 83, no. 5, pp. 803–812, 1995. View at Google Scholar · View at Scopus
  6. S. A. Kliewer, J. M. Lenhard, T. M. Willson, I. Patel, D. C. Morris, and J. M. Lehmann, “A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor γ and promotes adipocyte differentiation,” Cell, vol. 83, no. 5, pp. 813–819, 1995. View at Google Scholar · View at Scopus
  7. J. M. Lehmann, L. B. Moore, T. A. Smith-Oliver, W. O. Wilkison, T. M. Willson, and S. A. Kliewer, “An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ),” The Journal of Biological Chemistry, vol. 270, no. 22, pp. 12953–12956, 1995. View at Publisher · View at Google Scholar · View at Scopus
  8. R. M. Peek Jr. and M. J. Blaser, “Helicobacter pylori and gastrointestinal tract adenocarcinomas,” Nature Reviews Cancer, vol. 2, no. 1, pp. 28–37, 2002. View at Google Scholar · View at Scopus
  9. V. Herrera and J. Parsonnet, “Helicobacter pylori and gastric adenocarcinoma,” Clinical Microbiology and Infection, vol. 15, no. 11, pp. 971–976, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. D. B. Polk and R. M. Peek Jr., “Helicobacter pylori: gastric cancer and beyond,” Nature Reviews Cancer, vol. 10, no. 6, pp. 403–414, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. O. Braissant, F. Foufelle, C. Scotto, M. Dauça, and W. Wahli, “Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-α, -β, and -γ in the adult rat,” Endocrinology, vol. 137, no. 1, pp. 354–366, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. P. C. Konturek, J. Kania, V. Kukharsky et al., “Implication of peroxisome proliferator-activated receptor γ and proinflammatory cytokines in gastric carcinogenesis: link to Helicobacter pylori-infection,” Journal of Pharmacological Sciences, vol. 96, no. 2, pp. 134–143, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. S. H. Son, H. K. Kim, J. S. Ji et al., “Expression of peroxisome proliferator-activated receptor (PPAR) gamma in Helicobacter pylori-infected gastric epithelium,” The Korean Journal of Gastroenterology, vol. 49, no. 2, pp. 72–78, 2007, in Korean. View at Google Scholar · View at Scopus
  14. H. Haruna, T. Shimizu, Y. Ohtsuka et al., “Expression of COX-1, COX-2, and PPAR-γ in the gastric mucosa of children with Helicobacter pylori infection,” Pediatrics International, vol. 50, no. 1, pp. 1–6, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Inoue, T. Tanabe, and K. Umesono, “Feedback control of cyclooxygenase-2 expression through PPARγ,” The Journal of Biological Chemistry, vol. 275, no. 36, pp. 28028–28032, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. P. C. Konturek, J. Kania, J. W. Konturek, A. Nikiforuk, S. J. Konturek, and E. G. Hahn, “H. pylori infection, atrophic gastritis, cytokines, gastrin, COX-2, PPARγ and impaired apoptosis in gastric carcinogenesis,” Medical Science Monitor, vol. 9, no. 7, pp. SR53–SR66, 2003. View at Google Scholar · View at Scopus
  17. L. Dubuquoy, S. Dharancy, S. Nutten, S. Pettersson, J. Auwerx, and P. Desreumaux, “Role of peroxisome proliferator-activated receptor γ and retinoid X receptor heterodimer in hepatogastroenterological diseases,” The Lancet, vol. 360, no. 9343, pp. 1410–1418, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. R. A. Gupta, D. B. Polk, U. Krishna et al., “Activation of peroxisome proliferator-activated receptor γ suppresses nuclear factor κB-mediated apoptosis induced by Helicobacter pylori in gastric epithelial cells,” The Journal of Biological Chemistry, vol. 276, no. 33, pp. 31059–31066, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Piotrowski, H. Piotrowski, D. Skrodzka, A. Slomiany, and B. L. Slomiany, “Induction of acute gastritis and epithelial apoptosis by Helicobacter pylori lipopolysaccharide,” Scandinavian Journal of Gastroenterology, vol. 32, no. 3, pp. 203–211, 1997. View at Google Scholar · View at Scopus
  20. B. L. Slomiany and A. Slomiany, “Suppression of gastric mucosal inflammatory responses to Helicobacter pylori lipopolysaccharide by peroxisome proliferator-activated receptor γ activation,” IUBMB Life, vol. 53, no. 6, pp. 303–308, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. B. L. Slomiany and A. Slomiany, “Impedance of Helicobacter pylori lipopolysaccharide interference with gastric mucin synthesis by peroxisome proliferator-activated receptor γ activation involves phosphatidylinositol 3-kinase/ERK pathway,” IUBMB Life, vol. 55, no. 2, pp. 97–102, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Basu, S. K. Pathak, G. Chatterjee, S. Pathak, J. Basu, and M. Kundu, “Helicobacter pylori protein HP0175 transactivates epidermal growth factor receptor through TLR4 in gastric epithelial cells,” The Journal of Biological Chemistry, vol. 283, no. 47, pp. 32369–32376, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. O. S. Gardner, B. J. Dewar, H. S. Earp, J. M. Samet, and L. M. Graves, “Dependence of peroxisome proliferator-activated receptor ligand-induced mitogen-activated protein kinase signaling on epidermal growth factor receptor transactivation,” The Journal of Biological Chemistry, vol. 278, no. 47, pp. 46261–46269, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. B. L. Slomiany and A. Slomiany, “Role of epidermal growth factor receptor transactivation in PPARγ-dependent suppression of Helicobacter pylori interference with gastric mucin synthesis,” Inflammopharmacology, vol. 12, no. 2, pp. 177–188, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. K. D. Crew and A. I. Neugut, “Epidemiology of gastric cancer,” World Journal of Gastroenterology, vol. 12, no. 3, pp. 354–362, 2006. View at Google Scholar · View at Scopus
  26. A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA: A Cancer Journal for Clinicians, vol. 60, no. 5, pp. 277–300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. J. S. Macdonald, S. R. Smalley, J. Benedetti et al., “Chemoradiotherapy after surgery compared with surgery alone for adenocarcinoma of the stomach or gastroesophageal junction,” The New England Journal of Medicine, vol. 345, no. 10, pp. 725–730, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. N. Takahashi, T. Okumura, W. Motomura, Y. Fujimoto, I. Kawabata, and Y. Kohgo, “Activation of PPARγ inhibits cell growth and induces apoptosis in human gastric cancer cells,” FEBS Letters, vol. 455, no. 1-2, pp. 135–139, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Sato, S. Ishihara, K. Kawashima et al., “Expression of peroxisome proliferator-activated receptor (PPAR)γ in gastric cancer and inhibitory effects of PPARγ agonists,” British Journal of Cancer, vol. 83, no. 10, pp. 1394–1400, 2000. View at Google Scholar · View at Scopus
  30. Y.-X. Chen, X.-Y. Zhong, Y.-F. Qin, W. Bing, and L.-Z. He, “15d-PGJ2 inhibits cell growth and induces apoptosis of MCG-803 human gastric cancer cell line,” World Journal of Gastroenterology, vol. 9, no. 10, pp. 2149–2153, 2003. View at Google Scholar · View at Scopus
  31. W. K. Leung, A. H. C. Bai, V. Y. W. Chan et al., “Effect of peroxisome proliferator activated receptor γ ligands on growth and gene expression profiles of gastric cancer cells,” Gut, vol. 53, no. 3, pp. 331–338, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. C. W. Cheon, D. H. Kim, D. H. Kim, Y. H. Cho, and J. H. Kim, “Effects of ciglitazone and troglitazone on the proliferation of human stomach cancer cells,” World Journal of Gastroenterology, vol. 15, no. 3, pp. 310–320, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Nomura, A. Nakajima, S. Ishimine, N. Matsuhashi, T. Kadowaki, and M. Kaminishi, “Differential expression of peroxisome proliferator-activated receptor in histologically different human gastric cancer tissues,” Journal of Experimental and Clinical Cancer Research, vol. 25, no. 3, pp. 443–448, 2006. View at Google Scholar · View at Scopus
  34. Q. He, J. Chen, H.-L. Lin, P.-J. Hu, and M.-H. Chen, “Expression of peroxisome proliferator-activated receptor γ, E-cadherin and matrix metalloproteinases-2 in gastric carcinoma and lymph node metastases,” Chinese Medical Journal, vol. 120, no. 17, pp. 1498–1504, 2007. View at Google Scholar · View at Scopus
  35. E. Burgermeister, T. Friedrich, I. Hitkova et al., “The Ras inhibitors caveolin-1 and docking protein 1 activate peroxisome proliferator-activated receptor γ through spatial relocalization at helix 7 of its ligand-binding domain,” Molecular and Cellular Biology, vol. 31, no. 16, pp. 3497–3510, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Kitamura, Y. Miyazaki, S. Hiraoka et al., “PPARγ inhibits the expression of c-MET in human gastric cancer cells through the suppression of Ets,” Biochemical and Biophysical Research Communications, vol. 265, no. 2, pp. 453–456, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Yoshida, K. Tanabe, D. Fujii, N. Oue, W. Yasui, and T. Toge, “Induction mechanism of apoptosis by troglitazone through peroxisome proliferator-activated receptor-γ in gastric carcinoma cells,” Anticancer Research, vol. 23, no. 1, pp. 267–273, 2003. View at Google Scholar · View at Scopus
  38. S. Takeuchi, T. Okumura, W. Motomura, M. Nagamine, N. Takahashi, and Y. Kohgo, “Troglitazone induces G1 arrest by p27Kip1 induction that is mediated by inhibition of proteasome in human gastric cancer cells,” Japanese Journal of Cancer Research, vol. 93, no. 7, pp. 774–782, 2002. View at Google Scholar · View at Scopus
  39. M. Nagamine, T. Okumura, S. Tanno et al., “PPARγ ligand-induced apoptosis through a p53-dependent mechanism in human gastric cancer cells,” Cancer Science, vol. 94, no. 4, pp. 338–343, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. P. C. Konturek, J. Kania, V. Kukharsky, S. Ocker, E. G. Hahn, and S. J. Konturek, “Influence of gastrin on the expression of cyclooxygenase-2, hepatocyte growth factor and apoptosis-related proteins in gastric epithelial cells,” Journal of Physiology and Pharmacology, vol. 54, no. 1, pp. 17–32, 2003. View at Google Scholar · View at Scopus
  41. J. Lu, K. Imamura, S. Nomura et al., “Chemopreventive effect of peroxisome proliferator-activated receptor γ on gastric carcinogenesis in mice,” Cancer Research, vol. 65, no. 11, pp. 4769–4774, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Shirin, E. M. Sordillo, T. K. Kolevska et al., “Chronic Helicobacter pylori infection induces an apoptosis-resistant phenotype associated with decreased expression of p27kip1,” Infection and Immunity, vol. 68, no. 9, pp. 5321–5328, 2000. View at Google Scholar
  43. J. Yu, W. K. Leung, E. K. W. Ng et al., “Effect of Helicobacter pylori eradication on expression of cyclin D2 and p27 in gastric intestinal metaplasia,” Alimentary Pharmacology and Therapeutics, vol. 15, no. 9, pp. 1505–1511, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. S. S. Kim, P. Meitner, T. A. Konkin, Y. S. Cho, M. B. Resnick, and S. F. Moss, “Altered expression of Skp2, c-Myc and p27 proteins but not mRNA after H. pylori eradication in chronic gastritis,” Modern Pathology, vol. 19, no. 1, pp. 49–58, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. S. S. Kim, Y. S. Cho, H. K. Kim et al., “The effect of rosiglitazone on the cell proliferation and the expressions of p27 and skp2 in Helicobacter pylori infected human gastric epithelial cells,” The Korean Journal of Gastroenterology, vol. 55, no. 4, pp. 225–231, 2010, in Korean. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. Chung-Jen, B. A. Beamer, C. Negri et al., “Molecular scanning of the human peroxisome proliferator activated receptor γ (hPPARγ) gene in diabetic Caucasians: identification of a Pro12Ala PPARγ2 missense mutation,” Biochemical and Biophysical Research Communications, vol. 241, no. 2, pp. 270–274, 1997. View at Publisher · View at Google Scholar · View at Scopus
  47. S. S. Deeb, L. Fajas, M. Nemoto et al., “A Pro12Ala substitution in PPARγ2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity,” Nature Genetics, vol. 20, no. 3, pp. 284–287, 1998. View at Publisher · View at Google Scholar · View at Scopus
  48. W. Xu, Y. Li, X. Wang et al., “PPARγ polymorphisms and cancer risk: a meta-analysis involving 32,138 subjects,” Oncology Reports, vol. 24, no. 2, pp. 579–585, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. W.-P. Koh, J. M. Yuan, D. Van Den Berg, S. A. Ingles, and M. C. Yu, “Peroxisome proliferator-activated receptor (PPAR) γ gene polymorphisms and colorectal cancer risk among Chinese in Singapore,” Carcinogenesis, vol. 27, no. 9, pp. 1797–1802, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. S.-Y. Liao, Z.-R. Zeng, W. K. Leung et al., “Peroxisome proliferator-activated receptor-gamma Pro12Ala polymorphism, Helicobacter pylori infection and non-cardia gastric carcinoma in Chinese,” Alimentary Pharmacology and Therapeutics, vol. 23, no. 2, pp. 289–294, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. T. Tahara, T. Arisawa, T. Shibata et al., “Influence of peroxisome proliferator-activated receptor (PPAR)γ Plo12Ala polymorphism as a shared risk marker for both gastric cancer and impaired fasting glucose (IFG) in Japanese,” Digestive Diseases and Sciences, vol. 53, no. 3, pp. 614–621, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. K. N. Prasad, A. Saxena, U. C. Ghoshal, M. R. Bhagat, and N. Krishnani, “Analysis of Pro12Ala PPAR gamma polymorphism and Helicobacter pylori infection in gastric adenocarcinoma and peptic ulcer disease,” Annals of Oncology, vol. 19, no. 7, pp. 1299–1303, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Bazargani, S. S. Khoramrooz, E. Kamali-Sarvestani, S. A. Taghavi, and M. Saberifiroozi, “Association between peroxisome proliferator-activated receptor-γ gene polymorphism (Pro12Ala) and Helicobacter pylori infection in gastric carcinogenesis,” Scandinavian Journal of Gastroenterology, vol. 45, no. 10, pp. 1162–1167, 2010. View at Publisher · View at Google Scholar · View at Scopus