Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2012 (2012), Article ID 738785, 8 pages
http://dx.doi.org/10.1155/2012/738785
Review Article

Antioxidant Stress and Anti-Inflammation of PPARα on Warm Hepatic Ischemia-Reperfusion Injury

Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China

Received 25 July 2012; Revised 27 September 2012; Accepted 10 October 2012

Academic Editor: Yasuteru Kondo

Copyright © 2012 Zhixin Gao and Yuan-Hai Li. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. C. Hong, D. Koroleff, V. Xia et al., “Regulated hepatic reperfusion mitigates ischemia-reperfusion injury and improves survival after prolonged liver warm ischemia: a pilot study on a novel concept of organ resuscitation in a large animal model,” Journal of the American College of Surgeons, vol. 214, no. 4, pp. 505–515, 2012. View at Publisher · View at Google Scholar
  2. C. N. Clarke, A. D. Tevar, and A. B. Lentsch, “Hepatic ischemia/reperfusion injury,” in Molecular Pathology of Liver Diseases, pp. 397–410, 2011. View at Google Scholar
  3. T. Okaya and A. B. Lentsch, “Peroxisome proliferator-activated receptor-α regulates postischemic liver injury,” American Journal of Physiology, vol. 286, no. 4, pp. G606–G612, 2004. View at Google Scholar · View at Scopus
  4. S. Q. Xu, Y. H. Li, S. H. Hu, K. Chen, and L. Y. Dong, “Effects of Wy14643 on hepatic ischemia reperfusion injury in rats,” World Journal of Gastroenterology, vol. 14, no. 45, pp. 6936–6942, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Cursio, J. Gugenheim, J. E. Ricci et al., “A caspase inhibitor fully protects rats against lethal normothermic liver ischemia by inhibition of liver apoptosis,” The FASEB Journal, vol. 13, no. 2, pp. 253–261, 1999. View at Google Scholar · View at Scopus
  6. V. Kohli, J. F. Madden, R. C. Bentley, P. A. Clavien, and M. Selzner, “Endothelial cell and hepatocyte deaths occur by apoptosis after ischemia-reperfusion injury in the rat liver,” Transplantation, vol. 67, no. 8, pp. 1099–1105, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. J. S. Gujral, T. J. Bucci, A. Farhood, and H. Jaeschke, “Mechanism of cell death during warm hepatic ischemia-reperfusion in rats: apoptosis or necrosis?” Hepatology, vol. 33, no. 2, pp. 397–405, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Jaeschke and J. J. Lemasters, “Apoptosis versus oncotic necrosis in hepatic ischemia/reperfusion injury,” Gastroenterology, vol. 125, no. 4, pp. 1246–1257, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Jaeschke, C. V. Smith, and J. R. Mitchell, “Reactive oxygen species during ischemia-reflow injury in isolated perfused rat liver,” The Journal of Clinical Investigation, vol. 81, no. 4, pp. 1240–1246, 1988. View at Google Scholar · View at Scopus
  10. H. Jaeschke and A. Farhood, “Neutrophil and Kupffer cell-induced oxidant stress and ischemia-reperfusion injury in rat liver,” American Journal of Physiology, vol. 260, no. 3, pp. G355–G362, 1991. View at Google Scholar · View at Scopus
  11. H. Jaeschke, A. P. Bautista, Z. Spolarics, and J. J. Spitzer, “Superoxide generation by Kupffer cells and priming of neutrophils during reperfusion after hepatic ischemia,” Free Radical Research Communications, vol. 15, no. 5, pp. 277–284, 1991. View at Google Scholar · View at Scopus
  12. H. Jaeschke, “Reactive oxygen and ischemia/reperfusion injury of the liver,” Chemico-Biological Interactions, vol. 79, no. 2, pp. 115–136, 1991. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Jaeschke, A. P. Bautista, Z. Spolarics, and J. J. Spitzer, “Superoxide generation by neutrophils and Kupffer cells during in vivo reperfusion after hepatic ischemia in rats,” Journal of Leukocyte Biology, vol. 52, no. 4, pp. 377–382, 1992. View at Google Scholar · View at Scopus
  14. H. Jaeschke and J. R. Mitchell, “Mitochondria and xanthine oxidase both generate reactive oxygen species in isolated perfused rat liver after hypoxic injury,” Biochemical and Biophysical Research Communications, vol. 160, no. 1, pp. 140–147, 1989. View at Publisher · View at Google Scholar
  15. H. Jaeschke, “Antioxidant defense mechanisms,” in Comprehensive Toxicology, vol. 9, pp. 319–337, 2010. View at Google Scholar
  16. A. L. Nieminen, A. M. Byrne, B. Herman, and J. J. Lemasters, “Mitochondrial permeability transition in hepatocytes induced by t- BuOOh: NAD(P)H and reactive oxygen species,” American Journal of Physiology, vol. 272, no. 4, pp. C1286–C1294, 1997. View at Google Scholar · View at Scopus
  17. A. Uchiyama, J. S. Kim, K. Kon et al., “Translocation of iron from lysosomes into mitochondria is a key event during oxidative stress-induced hepatocellular injury,” Hepatology, vol. 48, no. 5, pp. 1644–1654, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Liu, G. M. McGuire, M. A. Fisher, A. Farhood, C. W. Smith, and H. Jaeschke, “Activation of Kupffer cells and neutrophils for reactive oxygen formation is responsible for endotoxin-enhanced liver injury after hepatic ischemia,” Shock, vol. 3, no. 1, pp. 56–62, 1995. View at Google Scholar · View at Scopus
  19. I. Kurose, R. Wolf, M. B. Grisham, and D. N. Granger, “Modulation of ischemia/reperfusion-induced microvascular dysfunction by nitric oxide,” Circulation Research, vol. 74, no. 3, pp. 376–382, 1994. View at Google Scholar · View at Scopus
  20. H. Jaeschke, A. Farhood, A. P. Bautista, Z. Spolarics, and J. J. Spitzer, “Complement activates Kupffer cells and neutrophils during reperfusion after hepatic ischemia,” American Journal of Physiology, vol. 264, no. 4, pp. G801–G809, 1993. View at Google Scholar · View at Scopus
  21. H. Jaeschke and C. W. Smith, “Mechanisms of neutrophil-induced parenchymal cell injury,” Journal of Leukocyte Biology, vol. 61, no. 6, pp. 647–653, 1997. View at Google Scholar · View at Scopus
  22. I. Grattagliano, G. Vendemiale, and B. H. Lauterburg, “Reperfusion injury of the liver: role of mitochondria and protection by glutathione ester,” Journal of Surgical Research, vol. 86, no. 1, pp. 2–8, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Kumamoto, M. Suematsu, M. Shimazu et al., “Kupffer cell-independent acute hepatocellular oxidative stress and decreased bile formation in post-cold-ischemic rat liver,” Hepatology, vol. 30, no. 6, pp. 1454–1463, 1999. View at Google Scholar · View at Scopus
  24. A. B. Lentsch, A. Kato, H. Yoshidome, K. M. McMasters, and M. J. Edwards, “Inflammatory mechanisms and therapeutic strategies for warm hepatic ischemia/reperfusion injury,” Hepatology, vol. 32, no. 2, pp. 169–173, 2000. View at Google Scholar · View at Scopus
  25. H. Jaeschke, “Molecular mechanisms of hepatic ischemia-reperfusion injury and preconditioning,” American Journal of Physiology, vol. 284, no. 1, pp. G15–G26, 2003. View at Google Scholar · View at Scopus
  26. L. M. Colletti, D. G. Remick, G. D. Burtch, S. L. Kunkel, R. M. Strieter, and D. A. Campbell, “Role of tumor necrosis factor-α in the pathophysiologic alterations after hepatic ischemia/reperfusion injury in the rat,” The Journal of Clinical Investigation, vol. 85, no. 6, pp. 1936–1943, 1990. View at Google Scholar · View at Scopus
  27. A. B. Lentsch, H. Yoshidome, A. Kato et al., “Requirement for interleukin-12 in the pathogenesis of warm hepatic ischemia/reperfusion injury in mice,” Hepatology, vol. 30, no. 6, pp. 1448–1453, 1999. View at Google Scholar · View at Scopus
  28. T. Loop and H. Pahl, “Activators and target genes of Rel/NF-κB transcription factors,” in Nuclear Factor κB: Regulation and Role in Disease, pp. 1–48, 2003. View at Google Scholar · View at Scopus
  29. R. M. Zwacka, Y. Zhang, W. Zhou, J. Halldorson, and J. E. Engelhardt, “Ischemia/reperfusion injury in the liver of BALB/c mice activates AP-1 and nuclear factor κB independently of IκB degradation,” Hepatology, vol. 28, no. 4, pp. 1022–1030, 1998. View at Publisher · View at Google Scholar · View at Scopus
  30. L. M. Colletti, A. Cortis, N. Lukacs, S. L. Kunkel, M. Green, and R. M. Strieter, “Tumor necrosis factor up-regulates intercellular adhesion molecule 1, which is important in the neutrophil-dependent lung and liver injury associated with hepatic ischemia and reperfusion in the rat,” Shock, vol. 10, no. 3, pp. 182–191, 1998. View at Google Scholar · View at Scopus
  31. L. M. Colletti, S. L. Kunkel, A. Walz et al., “Chemokine expression during hepatic ischemia/reperfusion-induced lung injury in the rat. The role of epithelial neutrophil activating protein,” The Journal of Clinical Investigation, vol. 95, no. 1, pp. 134–141, 1995. View at Google Scholar · View at Scopus
  32. A. B. Lentsch, H. Yoshidome, W. G. Cheadle, F. N. Miller, and M. J. Edwards, “Chemokine involvement in hepatic ischemia/reperfusion injury in mice: roles for macrophage inflammatory protein-2 and KC,” Hepatology, vol. 27, no. 4, pp. 1172–1177, 1998. View at Google Scholar
  33. L. M. Colletti, S. L. Kunkel, A. Walz et al., “The role of cytokine networks in the local liver injury following hepatic ischemia/reperfusion in the rat,” Hepatology, vol. 23, no. 3, pp. 506–514, 1996. View at Google Scholar · View at Scopus
  34. L. M. Colletti, S. L. Kunkel, M. Green, M. Burdick, and R. M. Strieter, “Hepatic inflammation following 70% hepatectomy may be related to up-regulation of epithelial neutrophil activating protein-78,” Shock, vol. 6, no. 6, pp. 397–402, 1996. View at Google Scholar · View at Scopus
  35. M. Bilzer and B. H. Lauterburg, “Effects of hypochlorous acid and chloramines on vascular resistance, cell integrity, and biliary glutathione disulfide in the perfused rat liver: modulation by glutathione,” Journal of Hepatology, vol. 13, no. 1, pp. 84–89, 1991. View at Google Scholar · View at Scopus
  36. X. K. Li, A. F. Mohammad Matin, H. Suzuki, T. Uno, T. Yamaguchi, and Y. Harada, “Effect of protease inhibitor on ischemia/reperfusion injury of the rat liver,” Transplantation, vol. 56, no. 6, pp. 1331–1336, 1993. View at Google Scholar · View at Scopus
  37. J. X. Zhang, D. V. Jones, and M. G. Clemens, “Effect of activation on neutrophil-induced hepatic microvascular injury in isolated rat liver,” Shock, vol. 1, no. 4, pp. 273–278, 1994. View at Google Scholar · View at Scopus
  38. R. Di Paola and S. Cuzzocrea, “Peroxisome proliferator-activated receptors ligands and ischemia-reperfusion injury,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 375, no. 3, pp. 157–175, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. F. Serracino-Inglott, N. A. Habib, and R. T. Mathie, “Hepatic ischemia-reperfusion injury,” The American Journal of Surgery, vol. 181, no. 2, pp. 160–166, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. N. Beraza, T. Lüdde, U. Assmus, T. Roskams, S. V. Borght, and C. Trautwein, “Hepatocyte-specific IKKγ/NEMO expression determines the degree of liver injury,” Gastroenterology, vol. 132, no. 7, pp. 2504–2517, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Ghosh, M. J. May, and E. B. Kopp, “NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses,” Annual Review of Immunology, vol. 16, pp. 225–260, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. M. J. May and S. Ghosh, “Signal transduction through NF-κB,” Immunology Today, vol. 19, no. 2, pp. 80–88, 1998. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Scheidereit, “IκB kinase complexes: gateways to NF-κB activation and transcription,” Oncogene, vol. 25, no. 51, pp. 6685–6705, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Takahashi, R. W. Ganster, A. Gambotto et al., “Role of NF-κB on liver cold ischemia-reperfusion injury,” American Journal of Physiology, vol. 283, no. 5, pp. G1175–G1184, 2002. View at Google Scholar · View at Scopus
  45. T. Okaya and A. B. Lentsch, “Hepatic expression of S32A/S36A IκBα does not reduce postischemic liver injury,” Journal of Surgical Research, vol. 124, no. 2, pp. 244–249, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. I. E. Wartz, K. M. O'Rourke, H. Zhou et al., “De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling,” Nature, vol. 430, no. 7000, pp. 694–699, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. E. G. Lee, D. L. Boone, S. Chai et al., “Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice,” Science, vol. 289, no. 5488, pp. 2350–2354, 2000. View at Publisher · View at Google Scholar · View at Scopus
  48. I. Issemann and S. Green, “Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators,” Nature, vol. 347, no. 6294, pp. 645–650, 1990. View at Publisher · View at Google Scholar · View at Scopus
  49. B. Desvergne and W. Wahli, “Peroxisome proliferator-activated receptors: nuclear control of metabolism,” Endocrine Reviews, vol. 20, no. 5, pp. 649–688, 1999. View at Google Scholar · View at Scopus
  50. S. R. Pyper, N. Viswakarma, S. Yu, and J. K. Reddy, “PPARα: energy combustion, hypolipidemia, inflammation and cancer,” Nuclear Receptor Signaling, vol. 8, article e002, 2010. View at Google Scholar · View at Scopus
  51. D. Moras and H. Gronemeyer, “The nuclear receptor ligand-binding domain: structure and function,” Current Opinion in Cell Biology, vol. 10, no. 3, pp. 384–391, 1998. View at Publisher · View at Google Scholar · View at Scopus
  52. J. M. Lehmann, J. M. Lenhard, B. B. Oliver, G. M. Ringold, and S. A. Kliewer, “Peroxisome proliferator-activated receptors α and γ are activated by indomethacin and other non-steroidal anti-inflammatory drugs,” The Journal of Biological Chemistry, vol. 272, no. 6, pp. 3406–3410, 1997. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. F. Guan and M. D. Breyer, “Peroxisome proliferator-activated receptors (PPARs): novel therapeutic targets in renal disease,” Kidney International, vol. 60, no. 1, pp. 14–30, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. L. A. Cowart, S. Wei, M. H. Hsu et al., “The CYP4A isoforms hydroxylate epoxyeicosatrienoic acids to form high affinity peroxisome proliferator-activated receptor ligands,” The Journal of Biological Chemistry, vol. 277, no. 38, pp. 35105–35112, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. J. C. Fruchart, B. Staels, and P. Duriez, “The role of fibric acids in atherosclerosis,” Current Atherosclerosis Reports, vol. 3, no. 1, pp. 83–92, 2001. View at Google Scholar · View at Scopus
  56. T. Maeda and S. Kishioka, “PPAR and Pain,” International Review of Neurobiology, vol. 85, pp. 165–177, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. M. D. Wheeler, M. Katuna, O. M. Smutney et al., “Comparison of the effect of adenoviral delivery of three superoxide dismutase genes against hepatic ischemia-reperfusion injury,” Human Gene Therapy, vol. 12, no. 18, pp. 2167–2177, 2001. View at Publisher · View at Google Scholar · View at Scopus
  58. G. K. Glantzounis, H. J. Salacinski, W. Yang, B. R. Davidson, and A. M. Seifalian, “The contemporary role of antioxidant therapy in attenuating liver ischemia-reperfusion injury: a review,” Liver Transplantation, vol. 11, no. 9, pp. 1031–1047, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Schrader and H. D. Fahimi, “Peroxisomes and oxidative stress,” Biochimica et Biophysica Acta, vol. 1763, no. 12, pp. 1755–1766, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. N. Oshino, B. Chance, H. Sies, and T. Bücher, “The role of H2O2 generation in perfused rat liver and the reaction of catalase compound I and hydrogen donors,” Archives of Biochemistry and Biophysics, vol. 154, no. 1, pp. 117–131, 1973. View at Google Scholar · View at Scopus
  61. A. G. Siraki, J. Pourahmad, T. S. Chan, S. Khan, and P. J. O'Brien, “Endogenous and endobiotic induced reactive oxygen species formation by isolated hepatocytes,” Free Radical Biology and Medicine, vol. 32, no. 1, pp. 2–10, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. C. Ke, L. Yuan-Hai, X. Si-Qi et al., “Protective effects of peroxisome proliferator-activated receptor-α agonist, Wy14643, on hypoxia/reoxygenation injury in primary rat hepatocytes,” PPAR Research, vol. 2012, Article ID 547980, 8 pages, 2012. View at Publisher · View at Google Scholar
  63. T. Toyama, H. Nakamura, Y. Harano et al., “PPARα ligands activate antioxidant enzymes and suppress hepatic fibrosis in rats,” Biochemical and Biophysical Research Communications, vol. 324, no. 2, pp. 697–704, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. E. Ip, G. C. Farrell, G. Robertson, P. Hall, R. Kirsch, and I. Leclercq, “Central role of PPARα-dependent hepatic lipid turnover in dietary steatohepatitis in mice,” Hepatology, vol. 38, no. 1, pp. 123–132, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. T. Hasegawa, E. Malle, A. Farhood, and H. Jaeschke, “Generation of hypochlorite-modified proteins by neutrophils during ischemia-reperfusion injury in rat liver: attenuation by ischemic preconditioning,” American Journal of Physiology, vol. 289, no. 4, pp. G760–G767, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. T. W. Wu, N. Hashimoto, J. X. Au, J. Wu, D. A. G. Mickle, and D. Carey, “Trolox protects rat hepatocytes against oxyradical damage and the ischemic rat liver from reperfusion injury,” Hepatology, vol. 13, no. 3, pp. 575–580, 1991. View at Publisher · View at Google Scholar · View at Scopus
  67. B. Halliwell, “Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment,” Drugs and Aging, vol. 18, no. 9, pp. 685–716, 2001. View at Google Scholar · View at Scopus
  68. F. McCormick, “Signalling networks that cause cancer,” Trends in Genetics, vol. 15, no. 12, pp. M53–M56, 1999. View at Publisher · View at Google Scholar · View at Scopus
  69. G. B. Corcoran, L. Fix, D. P. Jones et al., “Apoptosis: molecular control point in toxicity,” Toxicology and Applied Pharmacology, vol. 128, no. 2, pp. 169–181, 1994. View at Publisher · View at Google Scholar · View at Scopus
  70. L. M. Colletti, A. Cortis, N. Lukacs, S. L. Kunkel, M. Green, and R. M. Strieter, “Tumor necrosis factor up-regulates intercellular adhesion molecule 1, which is important in the neutrophil-dependent lung and liver injury associated with hepatic ischemia and reperfusion in the rat,” Shock, vol. 10, no. 3, pp. 182–191, 1998. View at Google Scholar · View at Scopus
  71. P. R. Devchand, H. Keller, J. M. Peters, M. Vazquez, F. J. Gonzalez, and W. Wahli, “The PPARα-leukotriene B4 pathway to inflammation control,” Nature, vol. 384, no. 6604, pp. 39–43, 1996. View at Publisher · View at Google Scholar · View at Scopus
  72. P. R. Devchand, O. Ziouzenkova, and J. Plutzky, “Oxidative stress and peroxisome proliferator-activated receptors: reversing the curse?” Circulation Research, vol. 95, no. 12, pp. 1137–1139, 2004. View at Publisher · View at Google Scholar · View at Scopus
  73. P. Delerive, J. C. Fruchart, and B. Staels, “Peroxisome proliferator-activated receptors in inflammation control,” Journal of Endocrinology, vol. 169, no. 3, pp. 453–459, 2001. View at Publisher · View at Google Scholar · View at Scopus
  74. N. Marx, G. K. Sukhova, T. Collins, P. Libby, and J. Plutzky, “PPARα activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells,” Circulation, vol. 99, no. 24, pp. 3125–3131, 1999. View at Google Scholar · View at Scopus
  75. B. P. Neve, D. Corseaux, G. Chinetti et al., “PPARα agonists inhibit tissue factor expression in human monocytes and macrophages,” Circulation, vol. 103, no. 2, pp. 207–212, 2001. View at Google Scholar · View at Scopus
  76. P. Delerive, P. Gervois, J. C. Fruchart, and B. Staels, “Induction of IκBα expression as a mechanism contributing to the anti-inflammatory activities of peroxisome proliferator-activated receptor-α activators,” The Journal of Biological Chemistry, vol. 275, no. 47, pp. 36703–36707, 2000. View at Publisher · View at Google Scholar · View at Scopus
  77. Y. Adkins and D. S. Kelley, “Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids,” The Journal of Nutritional Biochemistry, vol. 21, no. 9, pp. 781–792, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. J. Zúñiga, M. Cancino, F. Medina et al., “N-3 PUFA supplementation triggers PPAR-α activation and PPAR-α/NF-κB interaction: anti-inflammatory implications in liver ischemia-reperfusion injury,” PLoS ONE, vol. 6, no. 12, Article ID e28502, 2011. View at Publisher · View at Google Scholar
  79. A. Opipari Jr., M. S. Boguski, and V. M. Dixit, “The A20 cDNA induced by tumor necrosis factor α encodes a novel type of zinc finger protein,” The Journal of Biological Chemistry, vol. 265, no. 25, pp. 14705–14708, 1990. View at Google Scholar · View at Scopus
  80. B. Coornaert, I. Carpentier, and R. Beyaert, “A20: central gatekeeper in inflammation and immunity,” The Journal of Biological Chemistry, vol. 284, no. 13, pp. 8217–8221, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. H. E. Ramsey, C. G. Da Silva, C. R. Longo et al., “A20 protects mice from lethal liver ischemia/reperfusion injury by increasing peroxisome proliferator-activated receptor-α expression,” Liver Transplantation, vol. 15, no. 11, pp. 1613–1621, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. J. Yu, H. S. Lee, S. M. Lee et al., “Aggravation of post-ischemic liver injury by overexpression of A20, an NF-κB suppressor,” Journal of Hepatology, vol. 55, no. 2, pp. 328–336, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. Y. Xu, S. Bialik, B. E. Jones et al., “NF-κB inactivation converts a hepatocyte cell line TNF-α response from proliferation to apoptosis,” American Journal of Physiology, vol. 275, no. 4, part 1, pp. C1058–C1066, 1998. View at Google Scholar · View at Scopus
  84. N. C. Teoh, J. Williams, J. Hartley, J. Yu, R. S. McCuskey, and G. C. Farrell, “Short-term therapy with peroxisome proliferation-activator receptor-agonist Wy-14,643 protects murine fatty liver against ischemia-reperfusion injury,” Hepatology, vol. 51, no. 3, pp. 996–1006, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. T. Luedde and C. Trautwein, “Intracellular survival pathways in the liver,” Liver International, vol. 26, no. 10, pp. 1163–1174, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. T. Luedde, U. Assmus, T. Wüstefeld et al., “Deletion of IKK2 in hepatocytes does not sensitize these cells to TNF-induced apoptosis but protects from ischemia/reperfusion injury,” The Journal of Clinical Investigation, vol. 115, no. 4, pp. 849–859, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. N. Matsui, K. Kasajima, M. Hada et al., “Inhibiton of NF-κB activation during ischemia reduces hepatic ischemia/reperfusion injury in rats,” The Journal of Toxicological Sciences, vol. 30, no. 2, pp. 103–110, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. H. Suetsugu, Y. Iimuro, T. Uehara et al., “Nuclear factor κB inactivation in the rat liver ameliorates short term total warm ischaemia/reperfusion injury,” Gut, vol. 54, no. 6, pp. 835–842, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. S. Kuboki, T. Okaya, R. Schuster et al., “Hepatocyte NF-κB activation is hepatoprotective during ischemia-reperfusion injury and is augmented by ischemic hypothermia,” American Journal of Physiology, vol. 292, no. 1, pp. G201–G207, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. S. Kuboki, N. Sakai, C. Clarke et al., “The peptidyl-prolyl isomerase, Pin1, facilitates NF-κB binding in hepatocytes and protects against hepatic ischemia/reperfusion injury,” Journal of Hepatology, vol. 51, no. 2, pp. 296–306, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. N. Sakai, H. L. Van Sweringen, R. Schuster et al., “Receptor activator of nuclear factor-κB ligand (RANKL) protects against hepatic ischemia/reperfusion injury in mice,” Hepatology, vol. 55, no. 3, pp. 888–897, 2012. View at Publisher · View at Google Scholar
  92. C. Crisafulli, S. Bruscoli, E. Esposito et al., “PPAR-α contributes to the anti-inflammatory activity of 17β-estradiol,” Journal of Pharmacology and Experimental Therapeutics, vol. 331, no. 3, pp. 796–807, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. A. A. Bulhak, C. Jung, C. G. Östenson, J. O. Lundberg, P. O. Sjoquist, and J. Pernow, “PPAR-α activation protects the type 2 diabetic myocardium against ischemia-reperfusion injury: involvement of the PI3-kinase/Akt and NO pathway,” American Journal of Physiology, vol. 296, no. 3, pp. H719–H727, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. S. Yang, H. Z. Lin, J. Hwang, V. P. Chacko, and A. M. Diehl, “Hepatic hyperplasia in noncirrhotic fatty livers: is obesity-related hepatic steatosis a premalignant condition?” Cancer Research, vol. 61, no. 13, pp. 5016–5023, 2001. View at Google Scholar · View at Scopus
  95. K. Koike, “Hepatitis C as a metabolic disease: implication for the pathogenesis of NASH,” Hepatology Research, vol. 33, no. 2, pp. 145–150, 2005. View at Publisher · View at Google Scholar · View at Scopus
  96. S. Q. Yang, A. K. Mandal, J. Huang, and A. M. Diehl, “Disrupted signaling and inhibited regeneration in obese mice with fatty livers: implications for nonalcoholic fatty liver disease pathophysiology,” Hepatology, vol. 34, no. 4, part 1, pp. 694–706, 2001. View at Publisher · View at Google Scholar · View at Scopus
  97. P. R. Holden and J. D. Tugwood, “Peroxisome proliferator-activated receptor alpha: role in rodent liver cancer and species differences,” Journal of Molecular Endocrinology, vol. 22, no. 1, pp. 1–8, 1999. View at Publisher · View at Google Scholar · View at Scopus
  98. I. Rusyn, S. Asakura, B. Pachkowski et al., “Expression of base excision DNA repair genes is a sensitive biomarker for in vivo detection of chemical-induced chronic oxidative stress,” Cancer Research, vol. 64, no. 3, pp. 1050–1057, 2004. View at Publisher · View at Google Scholar · View at Scopus