Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2012, Article ID 857142, 9 pages
http://dx.doi.org/10.1155/2012/857142
Review Article

Protection from Metabolic Dysregulation, Obesity, and Atherosclerosis by Citrus Flavonoids: Activation of Hepatic PGC1α-Mediated Fatty Acid Oxidation

1Vascular Biology Group, Robarts Research Institute, 100 Perth Drive, London, ON, Canada N6A 5K8
2Departments of Biochemistry and Medicine, The University of Western Ontario, London, ON, Canada N6A 5C1

Received 21 December 2011; Accepted 2 April 2012

Academic Editor: Brian Finck

Copyright © 2012 Erin E. Mulvihill and Murray W. Huff. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Garg and S. M. Haffner, “Insulin resistance and atherosclerosis: an overview,” Diabetes Care, vol. 19, no. 3, article 274, 1996. View at Google Scholar · View at Scopus
  2. H. N. Ginsberg and L. S. Huang, “The insulin resistance syndrome: impact on lipoprotein metebolism and atherothrombosis,” Journal of Cardiovascular Risk, vol. 7, no. 5, pp. 325–331, 2000. View at Google Scholar · View at Scopus
  3. H. N. Ginsberg, Y. L. Zhang, and A. Hernandez-Ono, “Metabolic syndrome: focus on dyslipidemia,” Obesity, vol. 14, supplement 1, pp. 41S–49S, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. D. S. Lee, M. Chiu, D. G. Manuel et al., “Trends in risk factors for cardiovascular disease in Canada: temporal, socio-demographic and geographic factors,” CMAJ, vol. 181, no. 3-4, pp. E55–E66, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Scalbert and G. Williamson, “Dietary intake and bioavailability of polyphenols,” Journal of Nutrition, vol. 130, no. 8, supplement, pp. 2073S–2085S, 2000. View at Google Scholar · View at Scopus
  6. M. G. L. Hertog, E. J. M. Feskens, P. C. H. Hollman, M. B. Katan, and D. Kromhout, “Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study,” The Lancet, vol. 342, no. 8878, pp. 1007–1011, 1993. View at Publisher · View at Google Scholar · View at Scopus
  7. L. A. Bazzano, “The high cost of not consuming fruits and vegetables,” Journal of the American Dietetic Association, vol. 106, no. 9, pp. 1364–1368, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Hooper, P. A. Kroon, E. B. Rimm et al., “Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials,” American Journal of Clinical Nutrition, vol. 88, no. 1, pp. 38–50, 2008. View at Google Scholar · View at Scopus
  9. B. C. Tohill, J. Seymour, M. Serdula, L. Kettel-Khan, and B. J. Rolls, “What epidemiologic studies tell us about the relationship between fruit and vegetable consumption and body weight,” Nutrition Reviews, vol. 62, no. 10, pp. 365–374, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. E. M. Kurowska, J. D. Spence, J. Jordan et al., “HDL-cholesterol-raising effect of orange juice in subjects with hypercholesterolemia,” American Journal of Clinical Nutrition, vol. 72, no. 5, pp. 1095–1100, 2000. View at Google Scholar · View at Scopus
  11. K. C. Ock, J. C. Sang, and W. O. Song, “Estimated dietary flavonoid intake and major food sources of U.S. adults,” Journal of Nutrition, vol. 137, no. 5, pp. 1244–1252, 2007. View at Google Scholar · View at Scopus
  12. R. Zamora-Ros, V. Knaze, L. Luján-Barroso et al., “Estimated dietary intakes of flavonols, flavanones and flavones in the European Prospective Investigation into Cancer and Nutrition (EPIC) 24 hour dietary recall cohort,” British Journal of Nutrition, vol. 106, no. 12, pp. 1915–1925, 2011. View at Publisher · View at Google Scholar
  13. E. E. Mulvihill and M. W. Huff, “Antiatherogenic properties of flavonoids: implications for cardiovascular health,” Canadian Journal of Cardiology, vol. 26, supplement A, pp. 17A–21A, 2010. View at Google Scholar · View at Scopus
  14. J. S. Choi, T. Yokozawa, and H. Oura, “Improvement of hyperglycemia and hyperlipemia in streptozotocin-diabetic rats by a methanolic extract of Prunus davidiana stems and its main component, prunin,” Planta Medica, vol. 57, no. 3, pp. 208–211, 1991. View at Google Scholar · View at Scopus
  15. R. H. Unger and P. E. Scherer, “Gluttony, sloth and the metabolic syndrome: a roadmap to lipotoxicity,” Trends in Endocrinology and Metabolism, vol. 21, no. 6, pp. 345–352, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. S. M. Grundy, “Metabolic syndrome: a multiplex cardiovascular risk factor,” The Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 2, pp. 399–404, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. C. L. E. Yen, S. J. Stone, S. Koliwad, C. Harris, and R. V. Farese, “DGAT enzymes and triacylglycerol biosynthesis,” Journal of Lipid Research, vol. 49, no. 11, pp. 2283–2301, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. R. S. Khan, K. Drosatos, and I. J. Goldberg, “Creating and curing fatty hearts,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 13, no. 2, pp. 145–149, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. C. H. Lee, P. Olson, and R. M. Evans, “Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors,” Endocrinology, vol. 144, no. 6, pp. 2201–2207, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. W. A. Alaynick, “Nuclear receptors, mitochondria and lipid metabolism,” Mitochondrion, vol. 8, no. 4, pp. 329–337, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. A. L. Bookout, Y. Jeong, M. Downes, R. T. Yu, R. M. Evans, and D. J. Mangelsdorf, “Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network,” Cell, vol. 126, no. 4, pp. 789–799, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. B. M. Forman, J. Chen, and R. M. Evans, “Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors α and δ,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 9, pp. 4312–4317, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. J. M. Peters, R. C. Cattley, and F. J. Gonzalez, “Role of PPARα in the mechanism of action of the nongenotoxic carcinogen and peroxisome proliferator Wy-14,643,” Carcinogenesis, vol. 18, no. 11, pp. 2029–2033, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. J. P. Bonnefont, F. Djouadi, C. Prip-Buus, S. Gobin, A. Munnich, and J. Bastin, “Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects,” Molecular Aspects of Medicine, vol. 25, no. 5-6, pp. 495–520, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Schreurs, F. Kuipers, and F. R. Van Der Leij, “Regulatory enzymes of mitochondrial β-oxidation as targets for treatment of the metabolic syndrome,” Obesity Reviews, vol. 11, no. 5, pp. 380–388, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Schreurs, T. H. van Dijk, A. Gerding, R. Havinga, D. J. Reijngoud, and F. Kuipers, “Soraphen, an inhibitor of the acetyl-CoA carboxylase system, improves peripheral insulin sensitivity in mice fed a high-fat diet,” Diabetes, Obesity and Metabolism, vol. 11, no. 10, pp. 987–991, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. M. V. Chakravarthy, Z. Pan, Y. Zhu et al., “New hepatic fat activates PPARα to maintain glucose, lipid, and cholesterol homeostasis,” Cell Metabolism, vol. 1, no. 5, pp. 309–322, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. J. M. Orellana-Gavaldà, L. Herrero, M. I. Malandrino et al., “Molecular therapy for obesity and diabetes based on a long-term increase in hepatic fatty-acid oxidation,” Hepatology, vol. 53, no. 3, pp. 821–832, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Yu and J. K. Reddy, “Transcription coactivators for peroxisome proliferator-activated receptors,” Biochimica et Biophysica Acta, vol. 1771, no. 8, pp. 936–951, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Lin, C. Handschin, and B. M. Spiegelman, “Metabolic control through the PGC-1 family of transcription coactivators,” Cell Metabolism, vol. 1, no. 6, pp. 361–370, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Handschin and B. M. Spiegelman, “Peroxisome proliferator-activated receptor γ coactivator 1 coactivators, energy homeostasis, and metabolism,” Endocrine Reviews, vol. 27, no. 7, pp. 728–735, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Herzig, F. Long, U. S. Jhala et al., “CREB regulates hepatic gluconeogenesis through the coactivator PGC-1,” Nature, vol. 413, no. 6852, pp. 179–183, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. T. C. Leone, J. J. Lehman, B. N. Finck et al., “PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis,” PLoS Biology, vol. 3, no. 4, article e101, 2005. View at Google Scholar · View at Scopus
  34. J. L. Estall, M. Kahn, M. P. Cooper et al., “Sensitivity of lipid metabolism and insulin signaling to genetic alterations in hepatic peroxisome proliferator-activated receptor-γ coactivator-1α expression,” Diabetes, vol. 58, no. 7, pp. 1499–1508, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Guerre-Millo, C. Rouault, P. Poulain et al., “PPAR-α-null mice are protected from high-fat diet-induced insulin resistance,” Diabetes, vol. 50, no. 12, pp. 2809–2814, 2001. View at Google Scholar · View at Scopus
  36. T. Aoyama, J. M. Peters, N. Iritani et al., “Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor α (PPARα),” The Journal of Biological Chemistry, vol. 273, no. 10, pp. 5678–5684, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. T. C. Leone, C. J. Weinheimer, and D. P. Kelly, “A critical role for the peroxisome proliferator-activated receptor α (PPARα) in the cellular fasting response: the PPARα-null mouse as a model of fatty acid oxidation disorders,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 13, pp. 7473–7478, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Lee, J. L. Saver, A. Towfighi, J. Chow, and B. Ovbiagele, “Efficacy of fibrates for cardiovascular risk reduction in persons with atherogenic dyslipidemia: a meta-analysis,” Atherosclerosis, vol. 217, no. 2, pp. 492–498, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Gorinstein, A. Caspi, I. Libman, E. Katrich, H. T. Lerner, and S. Trakhtenberg, “Preventive effects of diets supplemented with sweetie fruits in hypercholesterolemic patients suffering from coronary artery disease,” Preventive Medicine, vol. 38, no. 6, pp. 841–847, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Gorinstein, A. Caspi, I. Libman et al., “Red grapefruit positively influences serum triglyceride level in patients suffering from coronary atherosclerosis: studies in vitro and in humans,” Journal of Agricultural and Food Chemistry, vol. 54, no. 5, pp. 1887–1892, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. U. J. Jung, H. J. Kim, J. S. Lee et al., “Naringin supplementation lowers plasma lipids and enhances erythrocyte antioxidant enzyme activities in hypercholesterolemic subjects,” Clinical Nutrition, vol. 22, no. 6, pp. 561–568, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. I. Demonty, Y. Lin, Y. E. M. P. Zebregs et al., “The citrus flavonoids hesperidin and naringin do not affect serum cholesterol in moderately hypercholesterolemic men and women,” Journal of Nutrition, vol. 140, no. 9, pp. 1615–1620, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. N. M. Borradaile, L. E. De Dreu, P. H. R. Barrett, C. D. Behrsin, and M. W. Huff, “Hepatocyte ApoB-containing lipoprotein secretion is decreased by the grapefruit flavonoid, naringenin, via inhibition of MTP-mediated microsomal triglyceride accumulation,” Biochemistry, vol. 42, no. 5, pp. 1283–1291, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. N. M. Borradaile, L. E. De Dreu, P. H. R. Barrett, and M. W. Huff, “Inhibition of hepatocyte apoB secretion by naringenin: enhanced rapid intracellular degradation independent of reduced microsomal cholesteryl esters,” Journal of Lipid Research, vol. 43, no. 9, pp. 1544–1554, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. E. E. Mulvihill, E. M. Allister, B. G. Sutherland et al., “Naringenin prevents dyslipidemia, apolipoprotein B overproduction, and hyperinsulinemia in LDL receptor-null mice with diet-induced insulin resistance,” Diabetes, vol. 58, no. 10, pp. 2198–2210, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. D. T. T. Huong, Y. Takahashi, and T. Ide, “Activity and mRNA levels of enzymes involved in hepatic fatty acid oxidation in mice fed citrus flavonoids,” Nutrition, vol. 22, no. 5, pp. 546–552, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. N. Wood, “Hepatolipidemic effects of naringenin in high cornstarch- versus high coconut oil-fed rats,” Journal of Medicinal Food, vol. 7, no. 3, pp. 315–319, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. E. E. Mulvihill, J. M. Assini, J. K. Lee et al., “Nobiletin attenuates VLDL overproduction, dyslipidemia, and atherosclerosis in mice with diet-induced insulin resistance,” Diabetes, vol. 60, no. 5, pp. 1446–1457, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. E. M. Kurowska and J. A. Manthey, “Hypolipidemic effects and absorption of citrus polymethoxylated flavones in hamsters with diet-induced hypercholesterolemia,” Journal of Agricultural and Food Chemistry, vol. 52, no. 10, pp. 2879–2886, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. U. J. Jung, M. K. Lee, Y. B. Park, M. A. Kang, and M. S. Choi, “Effect of citrus flavonoids on lipid metabolism and glucose-regulating enzyme mRNA levels in type-2 diabetic mice,” International Journal of Biochemistry and Cell Biology, vol. 38, no. 7, pp. 1134–1145, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. L. Liu, S. Shan, K. Zhang, Z. Q. Ning, X. P. Lu, and Y. Y. Cheng, “Naringenin and hesperetin, two flavonoids derived from Citrus aurantium up-regulate transcription of adiponectin,” Phytotherapy Research, vol. 22, no. 10, pp. 1400–1403, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. J. Goldwasser, P. Y. Cohen, E. Yang, P. Balaguer, M. L. Yarmush, and Y. Nahmias, “Transcriptional regulation of human and rat hepatic lipid metabolism by the grapefruit flavonoid naringenin: role of PPARα, PPARγ and LXRα,” PLoS ONE, vol. 5, no. 8, Article ID e12399, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. I. Erlund, E. Meririnne, G. Alfthan, and A. Aro, “Human nutrition and metabolism: plasma kinetics and urinary excretion of the flavanones naringenin and hesperetin in humans after ingestion of orange juice and grapefruit juice,” Journal of Nutrition, vol. 131, no. 2, pp. 235–241, 2001. View at Google Scholar · View at Scopus
  54. F. I. Kanaze, M. I. Bounartzi, M. Georgarakis, and I. Niopas, “Pharmacokinetics of the citrus flavanone aglycones hesperetin and naringenin after single oral administration in human subjects,” European Journal of Clinical Nutrition, vol. 61, no. 4, pp. 472–477, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. E. M. Kurowska, J. A. Manthey, A. Casaschi, and A. G. Theriault, “Modulation of HepG2 cell net apolipoprotein B secretion by the citrus polymethoxyflavone tangeretin,” Lipids, vol. 39, no. 2, pp. 143–151, 2004. View at Google Scholar · View at Scopus
  56. R. W. Li, A. G. Theriault, K. Au et al., “Citrus polymethoxylated flavones improve lipid and glucose homeostasis and modulate adipocytokines in fructose-induced insulin resistant hamsters,” Life Sciences, vol. 79, no. 4, pp. 365–373, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. S. R. Kashyap, R. Belfort, R. Berria et al., “Discordant effects of a chronic physiological increase in plasma FFA on insulin signaling in healthy subjects with or without a family history of type 2 diabetes,” American Journal of Physiology, vol. 287, no. 3, pp. E537–E546, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Adiels, M. R. Taskinen, and J. Borén, “Fatty liver, insulin resistance, and dyslipidemia,” Current Diabetes Reports, vol. 8, no. 1, pp. 60–64, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. T. R. Koves, J. R. Ussher, R. C. Noland et al., “Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance,” Cell Metabolism, vol. 7, no. 1, pp. 45–56, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Schenk, M. Saberi, and J. M. Olefsky, “Insulin sensitivity: modulation by nutrients and inflammation,” The Journal of Clinical Investigation, vol. 118, no. 9, pp. 2992–3002, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Klip, “The many ways to regulate glucose transporter 4,” Applied Physiology, Nutrition and Metabolism, vol. 34, no. 3, pp. 481–487, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. R. R. Huxley and H. A. W. Neil, “The relation between dietary flavonol intake and coronary heart disease mortality: a meta-analysis of prospective cohort studies,” European Journal of Clinical Nutrition, vol. 57, no. 8, pp. 904–908, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. S. A. Aherne and N. M. O'Brien, “Mechanism of protection by the flavonoids, quercetin and rutin, against tert-butylhydroperoxide- and menadione-induced DNA single strand breaks in Caco-2 cells,” Free Radical Biology and Medicine, vol. 29, no. 6, pp. 507–514, 2000. View at Publisher · View at Google Scholar · View at Scopus
  64. C. Yuting, Z. Rongliang, J. Zhongjian, and J. Yong, “Flavonoids as superoxide scavengers and antioxidants,” Free Radical Biology and Medicine, vol. 9, no. 1, pp. 19–21, 1990. View at Publisher · View at Google Scholar
  65. A. D. Kandhare, K. S. Raygude, P. Ghosh, A. E. Ghule, and S. L. Bodhankar, “Neuroprotective effect of naringin by modulation of endogenous biomarkers in streptozotocin induced painful diabetic neuropathy,” Fitoterapia. In press.
  66. P. Pu, D.-M. Gao, S. Mohamed et al., “Naringin ameliorates metabolic syndrome by activating AMP-activated protein kinase in mice fed a high-fat diet,” Archives of Biochemistry and Biophysics, vol. 518, no. 1, pp. 61–70, 2012. View at Publisher · View at Google Scholar
  67. S. M. Jeon, H. K. Kim, H. J. Kim et al., “Hypocholesterolemic and antioxidative effects of naringenin and its two metabolites in high-cholesterol fed rats,” Translational Research, vol. 149, no. 1, pp. 15–21, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. T. Annadurai, A. R. Muralidharan, T. Joseph, M. J. Hsu, P. A. Thomas, and P. Geraldine, “Antihyperglycemic and antioxidant effects of a flavanone, naringenin, in streptozotocin-nicotinamide-induced experimental diabetic rats,” Journal of Physiology and Biochemistry. In press. View at Publisher · View at Google Scholar
  69. E. E. Mulvihill, J. M. Assini, B. G. Sutherland et al., “Naringenin decreases progression of atherosclerosis by improving dyslipidemia in high-fat-fed low-density lipoprotein receptor-null mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 4, pp. 742–748, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. C. H. Lee, T. S. Jeong, Y. K. Choi et al., “Anti-atherogenic effect of citrus flavonoids, naringin and naringenin, associated with hepatic ACAT and aortic VCAM-1 and MCP-1 in high cholesterol-fed rabbits,” Biochemical and Biophysical Research Communications, vol. 284, no. 3, pp. 681–688, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Chanet, D. Milenkovic, C. Deval et al., “Naringin, the major grapefruit flavonoid, specifically affects atherosclerosis development in diet-induced hypercholesterolemia in mice,” Journal of Nutritional Biochemistry, vol. 23, no. 5, pp. 469–477, 2012. View at Publisher · View at Google Scholar
  72. S. Hirai, Y. I. Kim, T. Goto et al., “Inhibitory effect of naringenin chalcone on inflammatory changes in the interaction between adipocytes and macrophages,” Life Sciences, vol. 81, no. 16, pp. 1272–1279, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. J. H. Yen, C. Y. Weng, S. Li et al., “Citrus flavonoid 5-demethylnobiletin suppresses scavenger receptor expression in THP-1 cells and alters lipid homeostasis in HepG2 liver cells,” Molecular Nutrition and Food Research, vol. 55, no. 5, pp. 733–748, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. S. C. Whitman, E. M. Kurowska, J. A. Manthey, and A. Daugherty, “Nobiletin, a citrus flavonoid isolated from tangerines, selectively inhibits class A scavenger receptor-mediated metabolism of acetylated LDL by mouse macrophages,” Atherosclerosis, vol. 178, no. 1, pp. 25–32, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. V. Pasceri, J. Chang, J. T. Willerson, and E. T. H. Yeh, “Modulation of C-reactive protein-mediated monocyte chemoattractant protein-1 induction in human endothelial cells by anti-atherosclerosis drugs,” Circulation, vol. 103, no. 21, pp. 2531–2534, 2001. View at Google Scholar · View at Scopus
  76. M. Van Bilsen and F. A. Van Nieuwenhoven, “PPARs as therapeutic targets in cardiovascular disease,” Expert Opinion on Therapeutic Targets, vol. 14, no. 10, pp. 1029–1045, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. H. Duezt, Y. S. Chao, M. Hernandez et al., “Reduction of atherosclerosis by the peroxisome proliferator-activated receptor α agonist fenofibrate in mice,” The Journal of Biological Chemistry, vol. 277, no. 50, pp. 48051–48057, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. N. Hennuyer, A. Tailleux, G. Torpier et al., “PPARα, but not PPARγ, activators decrease macrophage-laden atherosclerotic lesions in a nondiabetic mouse model of mixed dyslipidemia,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 9, pp. 1897–1902, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. A. K. Sharma, S. Bharti, S. Ojha et al., “Up-regulation of PPARγ, heat shock protein-27 and-72 by naringin attenuates insulin resistance, β-cell dysfunction, hepatic steatosis and kidney damage in a rat model of type 2 diabetes,” British Journal of Nutrition, vol. 106, no. 11, pp. 1713–1723, 2011. View at Publisher · View at Google Scholar
  80. K. Kunimasa, S. Kuranuki, N. Matsuura et al., “Identification of nobiletin, a polymethoxyflavonoid, as an enhancer of adiponectin secretion,” Bioorganic and Medicinal Chemistry Letters, vol. 19, no. 7, pp. 2062–2064, 2009. View at Publisher · View at Google Scholar · View at Scopus