Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2012, Article ID 978687, 9 pages
http://dx.doi.org/10.1155/2012/978687
Review Article

Idealized PPAR 𝜸 -Based Therapies: Lessons from Bench and Bedside

Laboratório de Farmacologia Molecular, Departamento de Ciências Farmacêuticas, Faculdade de Ciências da Saúde, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, CEP 70910-900, Brazil

Received 6 February 2012; Accepted 23 April 2012

Academic Editor: Christopher J. Nicol

Copyright © 2012 Angélica Amorim Amato and Francisco de Assis Rocha Neves. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Chawla, J. J. Repa, R. M. Evans, and D. J. Mangelsdorf, “Nuclear receptors and lipid physiology: opening the x-files,” Science, vol. 294, no. 5548, pp. 1866–1870, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. R. M. Evans, G. D. Barish, and Y. X. Wang, “PPARs and the complex journey to obesity,” Nature Medicine, vol. 10, no. 4, pp. 355–361, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. V. Zoete, A. Grosdidier, and O. Michielin, “Peroxisome proliferator-activated receptor structures: ligand specificity, molecular switch and interactions with regulators,” Biochimica et Biophysica Acta, vol. 1771, no. 8, pp. 915–925, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. J. M. Lehmann, L. B. Moore, T. A. Smith-Oliver, W. O. Wilkison, T. M. Willson, and S. A. Kliewer, “An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ),” Journal of Biological Chemistry, vol. 270, no. 22, pp. 12953–12956, 1995. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Tontonoz and B. M. Spiegelman, “Fat and beyond: the diverse biology of PPARγ,” Annual Review of Biochemistry, vol. 77, pp. 289–312, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. R. K. Semple, V. K. K. Chatterjee, and S. O'Rahilly, “PPARγ and human metabolic disease,” Journal of Clinical Investigation, vol. 116, no. 3, pp. 581–589, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. C. F. Burant, S. Sreenan, K. I. Hirano et al., “Troglitazone action is independent of adipose tissue,” Journal of Clinical Investigation, vol. 100, no. 11, pp. 2900–2908, 1997. View at Google Scholar · View at Scopus
  8. O. Gavrilova, M. Haluzik, K. Matsusue et al., “Liver peroxisome proliferator-activated receptor γ contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass,” Journal of Biological Chemistry, vol. 278, no. 36, pp. 34268–34276, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. J. K. Kim, J. J. Fillmore, O. Gavrilova et al., “Differential effects of rosiglitazone on skeletal muscle and liver insulin resistance in A-ZIP/F-1 fatless mice,” Diabetes, vol. 52, no. 6, pp. 1311–1318, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. M. A. Khan, J. V. S. Peter, and J. L. Xue, “A prospective, randomized comparison of the metabolic effects of pioglitazone or rosiglitazone in patients with type 2 diabetes who were previously treated with troglitazone,” Diabetes Care, vol. 25, no. 4, pp. 708–711, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Yki-Järvinen, “Thiazolidinediones,” The New England Journal of Medicine, vol. 351, no. 11, pp. 1106–1118, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Grey, “Skeletal consequences of thiazolidinedione therapy,” Osteoporosis International, vol. 19, no. 2, pp. 129–137, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. S. E. Nissen and K. Wolski, “Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes,” The New England Journal of Medicine, vol. 356, no. 24, pp. 2457–2471, 2007. View at Google Scholar · View at Scopus
  14. J. D. Lewis, A. Ferrara, T. Peng et al., “Risk of bladder cancer among diabetic patients treated with pioglitazone: interim report of a longitudinal cohort study,” Diabetes Care, vol. 34, no. 4, pp. 916–922, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Piccinni, D. Motola, G. Marchesini, and E. Poluzzi, “Assessing the association of pioglitazone use and bladder cancer through drug adverse event reporting,” Diabetes Care, vol. 34, no. 6, pp. 1369–1371, 2011. View at Publisher · View at Google Scholar
  16. P. B. Watkins and R. W. Whitcomb, “Hepatic dysfunction associated with troglitazone,” The New England Journal of Medicine, vol. 338, no. 13, pp. 916–917, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. R. W. Nesto, D. Bell, R. O. Bonow et al., “Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association,” Diabetes Care, vol. 27, no. 1, pp. 256–263, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Zhang, A. Zhang, D. E. Kohan, R. D. Nelson, F. J. Gonzalez, and T. Yang, “Collecting duct-specific deletion of peroxisome proliferator-activated receptor γ blocks thiazolidinedione-induced fluid retention,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 26, pp. 9406–9411, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Guan, C. Hao, D. R. Cha et al., “Thiazolidinediones expand body fluid volume through PPARγ stimulation of ENaC-mediated renal salt absorption,” Nature Medicine, vol. 11, no. 8, pp. 861–866, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Zanchi, A. Chiolero, M. Maillard, J. Nussberger, H. R. Brunner, and M. Burnier, “Effects of the peroxisomal proliferator-activated receptor-γ agonist pioglitazone on renal and hormonal responses to salt in healthy men,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 3, pp. 1140–1145, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Guan, Y. Zhang, L. Davis, and M. D. Breyer, “Expression of peroxisome proliferator-activated receptors in urinary tract of rabbits and humans,” American Journal of Physiology, vol. 273, no. 6, pp. F1013–F1022, 1997. View at Google Scholar · View at Scopus
  22. T. Yang, D. E. Michele, J. Park et al., “Expression of peroxisomal proliferator-activated receptors and retinoid X receptors in the kidney,” American Journal of Physiology, vol. 277, no. 6, pp. F966–F973, 1999. View at Google Scholar · View at Scopus
  23. G. Hong, A. Lockhart, B. Davis et al., “PPAR gamma activation enhances cell surface ENaCalpha via up-regulation of SGK1 in human collecting duct cells,” The FASEB Journal, vol. 17, no. 13, pp. 1966–1968, 2003. View at Google Scholar
  24. L. Chen, B. Yang, J. A. McNulty et al., “GI262570, a peroxisome proliferator-activated receptor γ agonist, changes electrolytes and water reabsorption from the distal nephron in rats,” Journal of Pharmacology and Experimental Therapeutics, vol. 312, no. 2, pp. 718–725, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Yang, L. G. Clifton, J. A. McNulty, L. Chen, K. K. Brown, and P. G. Baer, “Effects of a PPARγ agonist, GI262570, on renal filtration fraction and nitric oxide level in conscious rats,” Journal of Cardiovascular Pharmacology, vol. 42, no. 3, pp. 436–441, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Tiwari, E. R. Blasi, J. R. Heyen, A. D. McHarg, and C. M. Ecelbarger, “Time course of AQP-2 and ENaC regulation in the kidney in response to PPAR agonists associated with marked edema in rats,” Pharmacological Research, vol. 57, no. 5, pp. 383–392, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Yamakawa, M. Hosoi, H. Koyama et al., “Peroxisome proliferator-activated receptor-γ agonists increase vascular endothelial growth factor expression in human vascular smooth muscle cells,” Biochemical and Biophysical Research Communications, vol. 271, no. 3, pp. 571–574, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Baba, K. Shimada, S. Neugebauer, D. Yamada, S. Hashimoto, and T. Watanabe, “The oral insulin sensitizer, thiazolidinedione, increases plasma vascular indothelial growth factor in type 2 diabetic patients,” Diabetes Care, vol. 24, no. 5, pp. 953–954, 2001. View at Google Scholar · View at Scopus
  29. A. B. Walker, E. K. Naderali, P. D. Chattington, R. E. Buckingham, and G. Williams, “Differential vasoactive effects of the insulin sensitizers rosiglitazone (BRL 49653) and troglitazone on human small arteries in vitro,” Diabetes, vol. 47, no. 5, pp. 810–814, 1998. View at Publisher · View at Google Scholar · View at Scopus
  30. J. A. Dormandi, B. Charbonnel, D. J. Eckland et al., “Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial in macroVascular Events): a randomised controlled trial,” The Lancet, vol. 366, no. 9493, pp. 1279–1289, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. H. C. Gerstein, S. Yusuf, J. Bosch et al., “Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial,” The Lancet, vol. 368, no. 9541, pp. 1096–1105, 2006. View at Publisher · View at Google Scholar
  32. A. Benbow, M. Stewart, and G. Yeoman, “Thiazolidinediones for type 2 diabetes. All glitazones may exacerbate heart failure,” British Medical Journal, vol. 322, no. 7280, p. 236, 2001. View at Google Scholar · View at Scopus
  33. K. K. Ryan, B. Li, B. E. Grayson, E. K. Matter, S. C. Woods, and R. J. Seeley, “A role for central nervous system PPAR-γ in the regulation of energy balance,” Nature Medicine, vol. 17, no. 5, pp. 623–626, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Lu, D. A. Sarruf, S. Talukdar et al., “Brain PPAR-γ promotes obesity and is required for the insuling-sensitizing effect of thiazolidinediones,” Nature Medicine, vol. 17, no. 5, pp. 618–622, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. I. E. Kelly, T. S. Han, K. Walsh, and M. E. J. Lean, “Effects of a thiazolidinedione compound on body fat and fat distribution of patients with type 2 diabetes,” Diabetes Care, vol. 22, no. 3, article 536, 1999. View at Google Scholar · View at Scopus
  36. T. Nakamura, T. Funahashi, S. Yamashita et al., “Thiazolidinedione derivative improves fat distribution and multiple risk factors in subjects with visceral fat accumulation—double-blind placebo-controlled trial,” Diabetes Research and Clinical Practice, vol. 54, no. 3, pp. 181–190, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Miyazaki, A. Mahankali, M. Matsuda et al., “Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 6, pp. 2784–2791, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. J. P. Berger, A. E. Petro, K. L. Macnaul et al., “Distinct properties and advantages of a novel peroxisome proliferator-activated protein γ selective modulator,” Molecular Endocrinology, vol. 17, no. 4, pp. 662–676, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. P. J. Larsen, P. B. Jensen, R. V. Sørensen et al., “Differential influences of peroxisome proliferator-activated receptorsγ and -α on food intake and energy homeostasis,” Diabetes, vol. 52, no. 9, pp. 2249–2259, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. M. N. Ghazzi, J. E. Perez, T. K. Antonucci et al., “Cardiac and glycemic benefits of troglitazone treatment in NIDDM,” Diabetes, vol. 46, no. 3, pp. 433–439, 1997. View at Google Scholar · View at Scopus
  41. M. Shimoyama, K. Ogino, Y. Tanaka, T. Ikeda, and I. Hisatome, “Hemodynamic basis for the acute cardiac effects of troglitazone in isolated perfused rat hearts,” Diabetes, vol. 48, no. 3, pp. 609–615, 1999. View at Google Scholar · View at Scopus
  42. M. Asakawa, H. Takano, T. Nagai et al., “Peroxisome proliferator-activated receptor γ plays a critical role in inhibition of cardiac hypertrophy in vitro and in vivo,” Circulation, vol. 105, no. 10, pp. 1240–1246, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Yamamoto, R. Ohki, R. T. Lee, U. Ikeda, and K. Shimada, “Peroxisome proliferator-activated receptor γ activators inhibit cardiac hypertrophy in cardiac myocytes,” Circulation, vol. 104, no. 14, pp. 1670–1675, 2001. View at Google Scholar · View at Scopus
  44. T. Tsuji, K. Mizushige, T. Noma et al., “Pioglitazone improves left ventricular diastolic function and decreases collagen accumulation in prediabetic stage of a type II diabetic rat,” Journal of Cardiovascular Pharmacology, vol. 38, no. 6, pp. 868–874, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. T. L. Yue, J. Chen, W. Bao et al., “In vivo myocardial protection from ischemia/reperfusion injury by the peroxisome proliferator-activated receptor-γ agonist rosiglitazone,” Circulation, vol. 104, no. 21, pp. 2588–2594, 2001. View at Google Scholar · View at Scopus
  46. T. Shiomi, H. Tsutsui, S. Hayashidani et al., “Pioglitazone, a peroxisome proliferator-activated receptor-γ agonist, attenuates left ventricular remodeling and failure after experimental myocardial infarction,” Circulation, vol. 106, no. 24, pp. 3126–3132, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. L. C. Pickavance, M. Tadayyon, P. S. Widdowson, R. E. Buckingham, and J. P. H. Wilding, “Therapeutic index for rosiglitazone in dietary obese rats: separation of efficacy and haemodilution,” British Journal of Pharmacology, vol. 128, no. 7, pp. 1570–1576, 1999. View at Google Scholar · View at Scopus
  48. K. Arakawa, T. Ishihara, M. Aoto, M. Inamasu, K. Kitamura, and A. Saito, “An antidiabetic thiazolidinedione induces eccentric cardiac hypertrophy by cardiac volume overload in rats,” Clinical and Experimental Pharmacology and Physiology, vol. 31, no. 1-2, pp. 8–13, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Z. Duan, C. Y. Ivashchenko, M. W. Russell, D. S. Milstone, and R. M. Mortensen, “Cardiomyocyte-specffic knockout and agonist of peroxisome proliferator-activated receptor-γ both induce cardiac hypertrophy in mice,” Circulation Research, vol. 97, no. 4, pp. 372–379, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. M. S. J. Sutton, M. Rendell, P. Dandona et al., “A comparison of the effects of rosiglitazone and glyburide on cardiovascular function and glycemic control in patients with type 2 diabetes,” Diabetes care, vol. 25, no. 11, pp. 2058–2064, 2002. View at Google Scholar · View at Scopus
  51. P. D. Home, S. J. Pocock, H. Beck-Nielsen et al., “Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial,” The Lancet, vol. 373, no. 9681, pp. 2125–2135, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. B. M. Psaty and R. L. Prentice, “Variation in event rates in trials of patients with type 2 diabetes,” Journal of the American Medical Association, vol. 302, no. 15, pp. 1698–1700, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. S. E. Nissen, “Setting the RECORD straight,” Journal of the American Medical Association, vol. 303, no. 12, pp. 1194–1195, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Singh, Y. K. Loke, and C. D. Furberg, “Long-term risk of cardiovascular events with rosiglitazone: a meta-analysis,” Journal of the American Medical Association, vol. 298, no. 10, pp. 1189–1195, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. G. A. Diamond, L. Bax, and S. Kaul, “Uncertain effects of rosiglitazone on the risk for myocardial infarction and cardiovascular death,” Annals of Internal Medicine, vol. 147, no. 8, pp. 578–581, 2007. View at Google Scholar · View at Scopus
  56. S. E. Nissen and K. Wolski, “Rosiglitazone revisited: an updated meta-analysis of risk for myocardial infarction and cardiovascular mortality,” Archives of Internal Medicine, vol. 170, no. 14, pp. 1191–1201, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. D. J. Graham, R. Ouellet-Hellstrom, T. E. Macurdy et al., “Risk of acute myocardial infarction, stroke, heart failure, and death in elderly medicare patients treated with rosiglitazone or pioglitazone,” Journal of the American Medical Association, vol. 304, no. 4, pp. 411–418, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. D. N. Juurlink, T. Gomes, L. L. Lipscombe, P. C. Austin, J. E. Hux, and M. M. Mamdani, “Adverse cardiovascular events during treatment with pioglitazone and rosiglitazone: population based cohort study,” British Medical Journal, vol. 339, Article ID b2942, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. E. Mannucci, M. Monami, C. Lamanna, G. F. Gensini, and N. Marchionni, “Pioglitazone and cardiovascular risk. A comprehensive meta-analysis of randomized clinical trials,” Diabetes, Obesity and Metabolism, vol. 10, no. 12, pp. 1221–1238, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. A. M. Lincoff, K. Wolski, S. J. Nicholls, and S. E. Nissen, “Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials,” Journal of the American Medical Association, vol. 298, no. 10, pp. 1180–1188, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. R. B. Goldberg, D. M. Kendall, M. A. Deeg et al., “A comparison of lipid and glycemic effects of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia,” Diabetes Care, vol. 28, no. 7, pp. 1547–1554, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Hsiao, D. S. Worrall, J. M. Olefsky, and S. Subramaniam, “Variance-modeled posterior inference of microarray data: detecting gene-expression changes in 3T3-L1 adipocytes,” Bioinformatics, vol. 20, no. 17, pp. 3108–3127, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. L. Guo, L. Zhang, Y. Sun et al., “Differences in hepatotoxicity and gene expression profiles by anti-diabetic PPAR γ agonists on rat primary hepatocytes and human HepG2 cells,” Molecular Diversity, vol. 10, no. 3, pp. 349–360, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. K. D. Wilson, Z. Li, R. Wagner et al., “Transcriptome alteration in the diabetic heart by rosiglitazone: implications for cardiovascular mortality,” PLoS ONE, vol. 3, no. 7, Article ID e2609, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. A. V. Schwartz, D. E. Sellmeyer, E. Vittinghoff et al., “Thiazolidinedione use and bone loss in older diabetic adults,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 9, pp. 3349–3354, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Grey, M. Bolland, G. Gamble et al., “The peroxisome proliferator-activated receptor-γ agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 4, pp. 1305–1310, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. S. Yaturu, B. Bryant, and S. K. Jain, “Thiazolidinedione treatment decreases bone mineral density in type 2 diabetic men,” Diabetes Care, vol. 30, no. 6, pp. 1574–1576, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. http://www.fda.gov/MedWatch/index.html.
  69. C. Meier, M. E. Kraenzlin, M. Bodmer, S. S. Jick, H. Jick, and C. R. Meier, “Use of thiazolidinediones and fracture risk,” Archives of Internal Medicine, vol. 168, no. 8, pp. 820–825, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. Z. A. Habib, S. L. Havstad, K. Wells, G. Divine, M. Pladevall, and L. K. Williams, “Thiazolidinedione use and the longitudinal risk of fractures in patients with type 2 diabetes mellitus,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 2, pp. 592–600, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. D. Bilik, L. N. McEwen, M. B. Brown et al., “Thiazolidinediones and fractures: evidence from translating research into action for diabetes,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 10, pp. 4560–4565, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. A. A. Ali, R. S. Weinstein, S. A. Stewart, A. M. Parfitt, S. C. Manolagas, and R. L. Jilka, “Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation,” Endocrinology, vol. 146, no. 3, pp. 1226–1235, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. S. O. Rzonca, L. J. Suva, D. Gaddy, D. C. Montague, and B. Lecka-Czernik, “Bone is a target for the antidiabetic compound rosiglitazone,” Endocrinology, vol. 145, no. 1, pp. 401–406, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. B. Lecka-Czernik, C. Ackert-Bicknell, M. L. Adamo et al., “Activation of peroxisome proliferator-activated receptor γ (PPARγ) by rosiglitazone suppresses components of the insulin-like growth factor regulatory system in vitro and in vivo,” Endocrinology, vol. 148, no. 2, pp. 903–911, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. Y. Wan, L. W. Chong, and R. M. Evans, “PPAR-γ regulates osteoclastogenesis in mice,” Nature Medicine, vol. 13, no. 12, pp. 1496–1503, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. J. El Hage, 2005, http://www.fda.gov/ohrms/dockets/ac/05/slides/2005-4169S2_02_02-FDA-ElHage.ppt.
  77. J. El Hage, “Clinical and preclinical safety assessments for PPAR agonists,” 2006, http://www.fda.gov/.
  78. J. E. Klaunig, M. A. Babich, K. P. Baetcke et al., “PPARα agonist-induced rodent tumors: modes of action and human relevance,” Critical Reviews in Toxicology, vol. 33, no. 6, pp. 655–780, 2003. View at Google Scholar · View at Scopus
  79. R. A. Lubet, S. M. Fischer, V. E. Steele, M. M. Juliana, R. Desmond, and C. J. Grubbs, “Rosiglitazone, a PPAR gamma agonist: potent promoter of hydroxybutyl(butyl)nitrosamine-induced urinary bladder cancers,” International Journal of Cancer, vol. 123, no. 10, pp. 2254–2259, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. M. A. K. Rumi, S. Ishihara, H. Kazumori, Y. Kadowaki, and Y. Kinoshita, “Can PRARγ ligands be used in cancer therapy?” Current Medicinal Chemistry, vol. 4, no. 6, pp. 465–477, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. M. B. Oleksiewicz, I. Thorup, H. S. Nielsen et al., “Generalized cellular hypertrophy is induced by a dual-acting PPAR agonist in rat urinary bladder urothelium in vivo,” Toxicologic Pathology, vol. 33, no. 5, pp. 552–560, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. S. M. Cohen, “Effects of PPARγ and combined agonists on the urinary tract of rats and other species,” Toxicological Sciences, vol. 87, no. 2, pp. 322–327, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. http://www.fda.gov/Drugs/DrugSafety/ucm259150.htm.
  84. A. Ferrara, J. D. Lewis, C. P. Quesenberry Jr. et al., “Cohort study of pioglitazone and cancer incidence in patients with diabetes,” Diabetes Care, vol. 34, no. 4, pp. 923–929, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. S. E. Nissen, K. Wolski, and E. J. Topol, “Effect of muraglitazar on death and major adverse cardiovascular events in patients with type 2 diabetes mellitus,” Journal of the American Medical Association, vol. 294, no. 20, pp. 2581–2586, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. T. M. Willson, J. E. Cobb, D. J. Cowan et al., “The structure-activity relationship between peroxisome proliferator-activated receptor γ agonism and the antihyperglycemic activity of thiazolidinediones,” Journal of Medicinal Chemistry, vol. 39, no. 3, pp. 665–668, 1996. View at Google Scholar · View at Scopus
  87. J. Sakamoto, H. Kimura, S. Moriyama et al., “Activation of human peroxisome proliferator-activated receptor (PPAR) subtypes by pioglitazone,” Biochemical and Biophysical Research Communications, vol. 278, no. 3, pp. 704–711, 2000. View at Publisher · View at Google Scholar · View at Scopus
  88. J. M. Hall and D. P. McDonnell, “The molecular mechanisms underlying the proinflammatory actions of thiazolidinediones in human macrophages,” Molecular Endocrinology, vol. 21, no. 8, pp. 1756–1768, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. M. Herz, D. Johns, J. Reviriego et al., “A randomized, double-blind, placebo-controlled, clinical trial of the effects of pioglitazone on glycemic control and dyslipidemia in oral antihyperglycemic medication-naive patients with type 2 diabetes mellitus,” Clinical Therapeutics, vol. 25, no. 4, pp. 1074–1095, 2003. View at Publisher · View at Google Scholar · View at Scopus
  90. G. Orasanu, O. Ziouzenkova, P. R. Devchand et al., “The peroxisome proliferator-activated receptor-γ agonist pioglitazone represses inflammation in a peroxisome proliferator-activated receptor-α-dependent manner in vitro and in vivo in mice,” Journal of the American College of Cardiology, vol. 52, no. 10, pp. 869–881, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. C.-J. Yen, B. A. Beamer, C. Negri et al., “Molecular scanning of the human peroxisome proliferator activated receptor γ (hPPARγ) gene in diabetic Caucasians: identification of a Pro12Ala PPARγ2 missense mutation,” Biochemical and Biophysical Research Communications, vol. 241, no. 2, pp. 270–274, 1997. View at Publisher · View at Google Scholar · View at Scopus
  92. J. Masugi, Y. Tamori, H. Mori, T. Koike, and M. Kasuga, “Inhibitory effect of a proline-to-alanine substitution at codon 12 of peroxisome proliferator-activated receptor-γ 2 on thiazolidinedione-induced adipogenesis,” Biochemical and Biophysical Research Communications, vol. 268, no. 1, pp. 178–182, 2000. View at Publisher · View at Google Scholar · View at Scopus
  93. S. S. Deeb, L. Fajas, M. Nemoto et al., “A Pro12Ala substitution in PPARγ2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity,” Nature Genetics, vol. 20, no. 3, pp. 284–287, 1998. View at Publisher · View at Google Scholar · View at Scopus
  94. V. I. Lindi, M. I. J. Uusitupa, J. Lindström et al., “Association of the Pro12Ala polymorphism in the PPAR-γ2 gene with 3-year incidence of type 2 diabetes and body weight change in the finnish diabetes prevention study,” Diabetes, vol. 51, no. 8, pp. 2581–2586, 2002. View at Google Scholar · View at Scopus
  95. D. Altshuler, J. N. Hirschhorn, M. Klannemark et al., “The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes,” Nature Genetics, vol. 26, no. 1, pp. 76–80, 2000. View at Publisher · View at Google Scholar · View at Scopus
  96. J. Pihlajamäki, R. Miettinen, R. Valve et al., “The Pro12Ala substitution in the peroxisome proliferator activated receptor gamma 2 is associated with an insulin-sensitive phenotype in families with familial combined hyperlipidemia and in nondiabetic elderly subjects with dyslipidemia,” Atherosclerosis, vol. 151, no. 2, pp. 567–574, 2000. View at Publisher · View at Google Scholar · View at Scopus
  97. S. Masud and S. Ye, “Effect of the peroxisome proliferates activated receptor-γ gene Pro12Ala variant on body mass index: a meta-analysis,” Journal of Medical Genetics, vol. 40, no. 10, pp. 773–780, 2003. View at Google Scholar · View at Scopus
  98. P. D. G. Miles, Y. Barak, W. He, R. M. Evans, and J. M. Olefsky, “Improved insulin-sensitivity in mice heterozygous for PPAR-γ deficiency,” Journal of Clinical Investigation, vol. 105, no. 3, pp. 287–292, 2000. View at Google Scholar · View at Scopus
  99. P. D. G. Miles, Y. Barak, R. M. Evans, and J. M. Olefsky, “Effect of heterozygous PPARγ deficiency and TZD treatment on insulin resistance associated with age and high-fat feeding,” American Journal of Physiology, vol. 284, no. 3, pp. E618–E626, 2003. View at Google Scholar · View at Scopus
  100. T. A. Cock, S. M. Houten, and J. Auwerx, “Peroxisome proliferator-activated receptor-γ: too much of a good thing causes harm,” EMBO Reports, vol. 5, no. 2, pp. 142–147, 2004. View at Publisher · View at Google Scholar · View at Scopus
  101. F. Zhang, B. E. Lavan, and F. M. Gregoire, “Selective modulators of PPAR-γ activity: molecular aspects related to obesity and side-effects,” PPAR Research, Article ID 32696, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. J. P. Berger, T. E. Akiyama, and P. T. Meinke, “PPARs: therapeutic targets for metabolic disease,” Trends in Pharmacological Sciences, vol. 26, no. 5, pp. 244–251, 2005. View at Publisher · View at Google Scholar · View at Scopus
  103. J. H. Choi, A. S. Banks, J. L. Estall et al., “Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARγ 3 by Cdk5,” Nature, vol. 466, no. 7305, pp. 451–456, 2010. View at Publisher · View at Google Scholar · View at Scopus
  104. J. H. Choi, A. S. Banks, and T. M. Kamenecka, “Antidiabetic actions of a non-agonist PPAR gamma ligand blocking Cdk5-mediated phosphorylation,” Nature, vol. 477, no. 7365, pp. 477–481, 2011. View at Google Scholar