Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2013, Article ID 452061, 8 pages
http://dx.doi.org/10.1155/2013/452061
Review Article

Peroxisome Proliferator-Activated Receptor Genetic Polymorphisms and Nonalcoholic Fatty Liver Disease: Any Role in Disease Susceptibility?

Section of Internal Medicine, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milano, Italy

Received 24 July 2012; Revised 13 November 2012; Accepted 20 November 2012

Academic Editor: Kenji Uno

Copyright © 2013 Paola Dongiovanni and Luca Valenti. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Marchesini, M. Brizi, G. Blanchi et al., “Nonalcoholic fatty liver disease: a feature of the metabolic syndrome,” Diabetes, vol. 50, no. 8, pp. 1844–1850, 2001. View at Google Scholar · View at Scopus
  2. D. E. Kleiner, E. M. Brunt, M. Van Natta et al., “Design and validation of a histological scoring system for nonalcoholic fatty liver disease,” Hepatology, vol. 41, no. 6, pp. 1313–1321, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Bugianesi, N. Leone, E. Vanni et al., “Expanding the natural history of nonalcoholic steatohepatitis: from cryptogenic cirrhosis to hepatocellular carcinoma,” Gastroenterology, vol. 123, no. 1, pp. 134–140, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. J. D. Browning, L. S. Szczepaniak, R. Dobbins et al., “Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity,” Hepatology, vol. 40, no. 6, pp. 1387–1395, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Bellentani, G. Saccoccio, F. Masutti et al., “Prevalence of and risk factors for hepatic steatosis in northern Italy,” Annals of Internal Medicine, vol. 132, no. 2, pp. 112–117, 2000. View at Google Scholar · View at Scopus
  6. J. C. Cohen, J. D. Horton, and H. H. Hobbs, “Human fatty liver disease: old questions and new insights,” Science, vol. 332, no. 6037, pp. 1519–1523, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Yamaguchi, L. Yang, S. McCall et al., “Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis,” Hepatology, vol. 45, no. 6, pp. 1366–1374, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. K. L. Donnelly, C. I. Smith, S. J. Schwarzenberg, J. Jessurun, M. D. Boldt, and E. J. Parks, “Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease,” Journal of Clinical Investigation, vol. 115, no. 5, pp. 1343–1351, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Bugianesi, A. Gastaldelli, E. Vanni et al., “Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms,” Diabetologia, vol. 48, no. 4, pp. 634–642, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Marchesini, M. Brizi, A. M. Morselli-Labate et al., “Association of nonalcoholic fatty liver disease with insulin resistance,” American Journal of Medicine, vol. 107, no. 5, pp. 450–455, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. K. M. Korenblat, E. Fabbrini, B. S. Mohammed, and S. Klein, “Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects,” Gastroenterology, vol. 134, no. 5, pp. 1369–1375, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Targher, C. P. Day, and E. Bonora, “Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease,” The New England Journal of Medicine, vol. 363, no. 14, pp. 1341–1350, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Fabbrini, B. S. Mohammed, F. Magkos, K. M. Korenblat, B. W. Patterson, and S. Klein, “Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease,” Gastroenterology, vol. 134, no. 2, pp. 424–431, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. J. B. Schwimmer, M. A. Celedon, J. E. Lavine et al., “Heritability of nonalcoholic fatty liver disease,” Gastroenterology, vol. 136, no. 5, pp. 1585–1592, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Makkonen, K. H. Pietiläinen, A. Rissanen, J. Kaprio, and H. Yki-Järvinen, “Genetic factors contribute to variation in serum alanine aminotransferase activity independent of obesity and alcohol: a study in monozygotic and dizygotic twins,” Journal of Hepatology, vol. 50, no. 5, pp. 1035–1042, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Guerrero, G. L. Vega, S. M. Grundy, and J. D. Browning, “Ethnic differences in hepatic steatosis: an insulin resistance paradox?” Hepatology, vol. 49, no. 3, pp. 791–801, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Romeo, J. Kozlitina, C. Xing et al., “Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease,” Nature Genetics, vol. 40, no. 12, pp. 1461–1465, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. E. K. Speliotes, L. M. Yerges-Armstrong, J. Wu et al., “Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits,” PLoS Genetics, vol. 7, no. 3, Article ID e1001324, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Valenti, A. Al-Serri, A. K. Daly et al., “Homozygosity for the patatin-like phospholipase-3/adiponutrin i148m polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease,” Hepatology, vol. 51, no. 4, pp. 1209–1217, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Sookoian and C. J. Pirola, “Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease,” Hepatology, vol. 53, no. 6, pp. 1883–1894, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Dongiovanni, L. Valenti, R. Rametta et al., “Genetic variants regulating insulin receptor signalling are associated with the severity of liver damage in patients with non-alcoholic fatty liver disease,” Gut, vol. 59, no. 2, pp. 267–273, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Al-Serri, Q. M. Anstee, L. Valenti et al., “The SOD2 C47T polymorphism influences NAFLD fibrosis severity: evidence from case-control and intra-familial allele association studies,” Journal of Hepatology, vol. 56, no. 2, pp. 448–454, 2012. View at Publisher · View at Google Scholar
  23. L. Miele, G. Beale, G. Patman et al., “The Kruppel-Like Factor 6 Genotype Is Associated With Fibrosis in Nonalcoholic Fatty Liver Disease,” Gastroenterology, vol. 135, no. 1, pp. 282–291, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Chen, Y. Li, S. Li, and C. Yu, “A Val227Ala substitution in the peroxisome proliferator activated receptor alpha (PPAR alpha) gene associated with non-alcoholic fatty liver disease and decreased waist circumference and waist-to-hip ratio,” Journal of Gastroenterology and Hepatology, vol. 23, no. 9, pp. 1415–1418, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Dongiovanni, R. Rametta, A. L. Fracanzani et al., “Lack of association between peroxisome proliferator-activated receptors alpha and gamma2 polymorphisms and progressive liver damage in patients with non-alcoholic fatty liver disease: a case control study,” BMC Gastroenterology, vol. 10, article 102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. A. I. Shulman and D. J. Mangelsdorf, “Retinoid X receptor heterodimers in the metabolic syndrome,” The New England Journal of Medicine, vol. 353, no. 6, pp. 604–615, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. S. J. Bensinger and P. Tontonoz, “Integration of metabolism and inflammation by lipid-activated nuclear receptors,” Nature, vol. 454, no. 7203, pp. 470–477, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. S. A. Kliewer, B. M. Forman, B. Blumberg et al., “Differential expression and activation of a family of murine peroxisome proliferator-activated receptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 15, pp. 7355–7359, 1994. View at Publisher · View at Google Scholar · View at Scopus
  29. T. C. Leone, C. J. Weinheimer, and D. P. Kelly, “A critical role for the peroxisome proliferator-activated receptor α (PPARα) in the cellular fasting response: the PPARα-null mouse as a model of fatty acid oxidation disorders,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 13, pp. 7473–7478, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Kersten, J. Seydoux, J. M. Peters, F. J. Gonzalez, B. Desvergne, and W. Wahli, “Peroxisome proliferator-activated receptor α mediates the adaptive response to fasting,” Journal of Clinical Investigation, vol. 103, no. 11, pp. 1489–1498, 1999. View at Google Scholar · View at Scopus
  31. R. Stienstra, F. Saudale, C. Duval et al., “Kupffer cells promote hepatic steatosis via interleukin-1β-dependent suppression of peroxisome proliferator-activated receptor α activity,” Hepatology, vol. 51, no. 2, pp. 511–522, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Yamakawa-Kobayashi, H. Ishiguro, T. Arinami, R. Miyazaki, and H. Hamaguchi, “A Val227 ala polymorphism in the peroxisome proliferator activated receptor α (PPARα) gene is associated with variations in serum lipid levels [2],” Journal of Medical Genetics, vol. 39, no. 3, pp. 189–191, 2002. View at Google Scholar · View at Scopus
  33. T. Sparsø, M. S. Hussain, G. Andersen et al., “Relationships between the functional PPARα Leu162Val polymorphism and obesity, type 2 diabetes, dyslipidaemia, and related quantitative traits in studies of 5799 middle-aged white people,” Molecular Genetics and Metabolism, vol. 90, no. 2, pp. 205–209, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. S. W. Beaven and P. Tontonoz, “Nuclear receptors in lipid metabolism: targeting the heart of dyslipidemia,” Annual Review of Medicine, vol. 57, pp. 313–329, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. Z. Wu, E. D. Rosen, R. Brun et al., “Cross-regulation of C/EBPα and PPARγ controls the transcriptional pathway of adipogenesis and insulin sensitivity,” Molecular Cell, vol. 3, no. 2, pp. 151–158, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. W. He, Y. Barak, A. Hevener et al., “Adipose-specific peroxisome proliferator-activated receptor γ knockout causes insulin resistance in fat and liver but not in muscle,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 26, pp. 15712–15717, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Kadowaki and T. Yamauchi, “Adiponectin and adiponectin receptors,” Endocrine Reviews, vol. 26, no. 3, pp. 439–451, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. Z. Wu, Y. Xie, R. F. Morrison, N. L. R. Bucher, and S. R. Farmer, “PPARγ induces the insulin-dependent glucose transporter GLUT4 in the absence of C/EBPα during the conversion of 3T3 fibroblasts into adipocytes,” Journal of Clinical Investigation, vol. 101, no. 1, pp. 22–32, 1998. View at Google Scholar · View at Scopus
  39. R. Belfort, S. A. Harrison, K. Brown et al., “A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis,” The New England Journal of Medicine, vol. 355, no. 22, pp. 2297–2307, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Gastaldelli, S. A. Harrison, R. Belfort-Aguilar et al., “Importance of changes in adipose tissue insulin resistance to histological response during thiazolidinedione treatment of patients with nonalcoholic steatohepatitis,” Hepatology, vol. 50, no. 4, pp. 1087–1093, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. G. Jiang, Q. Dallas-Yang, Z. Li et al., “Potentiation of insulin signaling in tissues of Zucker obese rats after acute and long-term treatment with PPARγ agonists,” Diabetes, vol. 51, no. 8, pp. 2412–2419, 2002. View at Google Scholar · View at Scopus
  42. D. L. Gerhold, L. I. U. Franklin, G. Jiang et al., “Gene expression profile of adipocyte differentiation and its regulation by peroxisome proliferator-activated receptor-γ agonists,” Endocrinology, vol. 143, no. 6, pp. 2106–2118, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Gurnell, D. B. Savage, V. K. K. Chatterjee, and S. O'Rahilly, “The metabolic syndrome: peroxisome proliferator-activated receptor γ and its therapeutic modulation,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 6, pp. 2412–2421, 2003. View at Google Scholar · View at Scopus
  44. I. Barroso, M. Gurnell, V. E. F. Crowley et al., “Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension,” Nature, vol. 402, no. 6764, pp. 880–883, 1999. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Altshuler, J. N. Hirschhorn, M. Klannemark et al., “The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes,” Nature Genetics, vol. 26, no. 1, pp. 76–80, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. Zhu, C. Qi, J. R. Korenberg et al., “Structural organization of mouse peroxisome proliferator-activated receptor γ (mPPARγ) gene: alternative promoter use and different splicing yield two mPPARγ isoforms,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 17, pp. 7921–7925, 1995. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Knouff and J. Auwerx, “Peroxisome proliferator-activated receptor-γ calls for activation in moderation: lessons from genetics and pharmacology,” Endocrine Reviews, vol. 25, no. 6, pp. 899–918, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. L. B. Tankó, A. Siddiq, C. Lecoeur et al., “ACDC/adiponectin and PPAR-γ gene polymorphisms: implications for features of obesity,” Obesity Research, vol. 13, no. 12, pp. 2113–2121, 2005. View at Google Scholar · View at Scopus
  49. A. Tönjes and M. Stumvoll, “The role of the Pro12Ala polymorphism in peroxisome proliferator-activated receptor γ in diabetes risk,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 10, no. 4, pp. 410–414, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. W. He, “PPARγPro12Ala polymorphism and human health,” PPAR Research, vol. 2009, Article ID 849538, 15 pages, 2009. View at Publisher · View at Google Scholar
  51. S. Gawrieh, M. C. Marion, R. Komorowski et al., “Genetic variation in the peroxisome proliferator activated receptor-gamma gene is associated with histologically advanced NAFLD,” Digestive Diseases and Sciences, vol. 57, no. 4, pp. 952–957, 2011. View at Publisher · View at Google Scholar
  52. A. C. Gupta, A. K. Chaudhory, Sukriti et al., “Peroxisome proliferators-activated receptor γ2 Pro12Ala variant is associated with body mass index in non-alcoholic fatty liver disease patients,” Hepatology International, vol. 5, no. 1, pp. 575–580, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. J. W. Rey, A. Noetel, A. Hardt et al., “Pro12Ala polymorphism of the peroxisome proliferatoractivated receptor γ2 in patients with fatty liver diseases,” World Journal of Gastroenterology, vol. 16, no. 46, pp. 5830–5837, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. Z. Yang, J. Wen, Q. Li et al., “PPARG gene Pro12Ala variant contributes to the development of non-alcoholic fatty liver in middle-aged and older Chinese population,” Molecular and Cellular Endocrinology, vol. 348, no. 1, pp. 255–259. View at Publisher · View at Google Scholar
  55. C. Thamer, J. Machann, O. Tschritter et al., “Relationship between serum adiponectin concentration and intramyocellular lipid stores in humans,” Hormone and Metabolic Research, vol. 34, no. 11-12, pp. 646–649, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. J. Zhou, Y. Y. Li, Y. Q. Nie et al., “Influence of polygenetic polymorphisms on the susceptibility to non-alcoholic fatty liver disease of Chinese people,” Journal of Gastroenterology and Hepatology, vol. 25, no. 4, pp. 772–777, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. S. P. Bhatt, P. Nigam, A. Misra et al., “Association of peroxisome proliferator activated receptor-γ gene with non-alcoholic fatty liver disease in Asian Indians residing in north India,” Gene, vol. 512, no. 1, pp. 143–147, 2013. View at Publisher · View at Google Scholar
  58. I. G. Schulman, “Nuclear receptors as drug targets for metabolic disease,” Advanced Drug Delivery Reviews, vol. 62, no. 13, pp. 1307–1315, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Chawla, C. H. Lee, Y. Barak et al., “PPARδ is a very low-density lipoprotein sensor in macrophages,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 3, pp. 1268–1273, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. C. H. Lee, K. Kang, I. R. Mehl et al., “Peroxisome proliferator-activated receptor δ promotes very low-density lipoprotein-derived fatty acid catabolism in the macrophage,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 7, pp. 2434–2439, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. Y. Barak, D. Liao, W. He et al., “Effects of peroxisome proliferator-activated receptor δ on placentation, adiposity, and colorectal cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 1, pp. 303–308, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. G. D. Barish, V. A. Narkar, and R. M. Evans, “PPARδ: a dagger in the heart of the metabolic syndrome,” Journal of Clinical Investigation, vol. 116, no. 3, pp. 590–597, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. C. Fürnsinn, T. M. Willson, and B. Brunmair, “Peroxisome proliferator-activated receptor-δ, a regulator of oxidative capacity, fuel switching and cholesterol transport,” Diabetologia, vol. 50, no. 1, pp. 8–17, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. A. N. Billin, “PPAR-β/δ agonists for type 2 diabetes and dyslipidemia: an adopted orphan still looking for a home,” Expert Opinion on Investigational Drugs, vol. 17, no. 10, pp. 1465–1471, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. J. Skogsberg, K. Kannisto, L. Roshani et al., “Characterization of the human peroxisome proliferator activated receptor delta gene and its expression,” International Journal of Molecular Medicine, vol. 6, no. 1, pp. 73–81, 2000. View at Google Scholar · View at Scopus
  66. J. Skogsberg, K. Kannisto, T. N. Cassel, A. Hamsten, P. Eriksson, and E. Ehrenborg, “Evidence that peroxisome proliferator-activated receptor delta influences cholesterol metabolism in men,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 4, pp. 637–643, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. J. Skogsberg, A. D. McMahon, F. Karpe, A. Hamsten, C. J. Packard, and E. Ehrenborg, “Peroxisome proliferator activated receptor delta genotype in relation to cardiovascular risk factors and risk of coronary heart disease in hypercholesterolaemic men,” Journal of Internal Medicine, vol. 254, no. 6, pp. 597–604, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. J. Aberle, I. Hopfer, F. U. Beil, and U. Seedorf, “Association of the T+294C polymorphism in PPAR δ with low HDL cholesterol and coronary heart disease risk in women,” International Journal of Medical Sciences, vol. 3, no. 3, pp. 108–111, 2006. View at Google Scholar · View at Scopus
  69. J. Robitaille, D. Gaudet, L. Pérusse, and M. C. Vohl, “Features of the metabolic syndrome are modulated by an interaction between the peroxisome proliferator-activated receptor-delta -87T>C polymorphism and dietary fat in French-Canadians,” International Journal of Obesity, vol. 31, no. 3, pp. 411–417, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. L. Andrulionyte, P. Peltola, J. L. Chiasson, and M. Laakso, “Single nucleotide polymorphisms of PPARD in combination with the Gly482Ser substitution of PGC-1A and the Pro12Ala substitution of PPARG2 predict the conversion from impaired glucose tolerance to type 2 diabetes: the STOP-NIDDM trial,” Diabetes, vol. 55, no. 7, pp. 2148–2152, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. N. Grarup, A. Albrechtsen, J. Ek et al., “Variation in the peroxisome proliferator-activated receptor δ gene in relation to common metabolic traits in 7,495 middle-aged white people,” Diabetologia, vol. 50, no. 6, pp. 1201–1208, 2007. View at Publisher · View at Google Scholar · View at Scopus