Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2013 (2013), Article ID 686525, 11 pages
http://dx.doi.org/10.1155/2013/686525
Review Article

Molecular Implications of the PPARs in the Diabetic Eye

Unidad de Investigación en Diabetes y Metabolism, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Instituto de Investigación Vall d'Hebron, Universitat Autónoma de Barcelona, Paseo Vall d'Hebron, 119-129 Barcelona, Spain

Received 26 September 2012; Revised 7 January 2013; Accepted 7 January 2013

Academic Editor: Ruth Roberts

Copyright © 2013 Andreea Ciudin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Cheung, P. Mitchell, and T. Y. Wong, “Diabetic retinopathy,” The Lancet, vol. 376, no. 9735, pp. 124–136, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Klein, S. E. Moss, B. E. K. Klein, M. D. Davis, and D. L. DeMets, “Wisconsin epidemiologic study of diabetic retinopathy. XII. Relationship of C-peptide and diabetic retinopathy,” Diabetes, vol. 39, no. 11, pp. 1445–1450, 1990. View at Google Scholar · View at Scopus
  3. L. Tong, S. A. Vernon, W. Kiel, V. Sung, and G. M. Orr, “Association of macular involvement with proliferative retinopathy in type 2 diabetes,” Diabetic Medicine, vol. 18, no. 5, pp. 388–394, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Delcourt, P. Massin, and M. Rosilio, “Epidemiology of diabetic retinopathy: expected vs reported prevalence of cases in the French population,” Diabetes and Metabolism, vol. 35, no. 6, pp. 431–438, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Chen, M. Looman, M. Laouri et al., “Burden of illness of diabetic macular edema: literature review,” Current Medical Research and Opinion, vol. 26, no. 7, pp. 1587–1597, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. E. L. Lamoureux and T. Y. Wong, “Diabetic retinopathy in 2011: further insights from new epidemiological studies and clinical trials,” Diabetes Care, vol. 34, no. 4, pp. 1066–1067, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. L. J. Lee, A. P. Yu, K. E. Cahill et al., “Direct and indirect costs among employees with diabetic retinopathy in the United States,” Current Medical Research and Opinion, vol. 24, no. 5, pp. 1549–1559, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. E. M. Pelletier, B. Shim, R. Ben-Joseph, and J. J. Caro, “Economic outcomes associated with microvascular complications of type 2 diabetes mellitus: results from a US claims data analysis,” Pharmacoeconomics, vol. 27, no. 6, pp. 479–490, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Heintz, A. B. Wirehn, B. B. Peebo, U. Rosenqvist, and L. A. Levin, “Prevalence and healthcare costs of diabetic retinopathy: a population-based register study in Sweden,” Diabetologia, vol. 53, no. 10, pp. 2147–2154, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. Q. Mohamed, M. C. Gillies, and T. Y. Wong, “Management of diabetic retinopathy: a systematic review,” The Journal of the American Medical Association, vol. 298, no. 8, pp. 902–916, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Simó and C. Hernández, “Advances in the medical treatment of diabetic retinopathy,” Diabetes Care, vol. 32, no. 8, pp. 1556–1562, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. M. C. Sugden, P. W. Caton, and M. J. Holness, “PPAR control: it's SIRTainly as easy as PGC,” Journal of Endocrinology, vol. 204, no. 2, pp. 93–104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. N. D. Lalwani, K. Alvares, and M. K. Reddy, “Peroxisome proliferator-binding protein: identification and partial characterization of nafenopin-, clofibric acid-, and ciprofibrate-binding proteins from rat liver,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 15, pp. 5242–5246, 1987. View at Google Scholar · View at Scopus
  14. N. D. Lalwani, W. E. Fahl, and J. K. Reddy, “Detection of a nafenopin binding protein in rat liver cytosol associated with the induction of peroxisome proliferation by hypolipidemic compounds,” Biochemical and Biophysical Research Communications, vol. 116, no. 2, pp. 388–393, 1983. View at Google Scholar · View at Scopus
  15. J. Vamecq and N. Latruffe, “Medical significance of peroxisome proliferator-activated receptors,” The Lancet, vol. 354, no. 9173, pp. 141–148, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. R. M. Evans, “The steroid and thyroid hormone receptor superfamily,” Science, vol. 240, no. 4854, pp. 889–895, 1988. View at Google Scholar · View at Scopus
  17. L. Fajas, D. Auboeuf, E. Raspé et al., “The organization, promoter analysis, and expression of the human PPARγ gene,” The Journal of Biological Chemistry, vol. 272, no. 30, pp. 18779–18789, 1997. View at Publisher · View at Google Scholar · View at Scopus
  18. O. Braissant, F. Foufelle, C. Scotto, M. Dauça, and W. Wahli, “Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-α, -β, and -γ in the adult rat,” Endocrinology, vol. 137, no. 1, pp. 354–366, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Auboeuf, J. Rieusset, L. Fajas et al., “Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-α in humans: no alteration in adipose tissue of obese and NIDDM patients,” Diabetes, vol. 46, no. 8, pp. 1319–1327, 1997. View at Google Scholar · View at Scopus
  20. T. Lemberger, O. Braissant, C. Juge-Aubry et al., “PPAR tissue distribution and interactions with other hormone-signaling pathways,” Annals of the New York Academy of Sciences, vol. 804, pp. 231–251, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. M. del V. Cano and P. L. Gehlbach, “PPAR-α ligands as potential therapeutic agents for wet age-related macular degeneration,” PPAR Research, vol. 2008, Article ID 821592, 5 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Bishop-Bailey, “PPARs and angiogenesis,” Biochemical Society Transactions, vol. 39, pp. 1601–1605, 2011. View at Publisher · View at Google Scholar
  23. J. Zhou, K. M. Wilson, and J. D. Medh, “Genetic analysis of four novel peroxisome proliferator activated receptor-γ splice variants in monkey macrophages,” Biochemical and Biophysical Research Communications, vol. 293, no. 1, pp. 274–283, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Ding, M. Fu, Q. Qin et al., “Cardiac peroxisome proliferator-activated receptor γ is essential in protecting cardiomyocytes from oxidative damage,” Cardiovascular Research, vol. 76, no. 2, pp. 269–279, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. A. W. Norris, L. Chen, S. J. Fisher et al., “Muscle-specific PPARγ-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones,” The Journal of Clinical Investigation, vol. 112, no. 4, pp. 608–618, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. I. Issemann and S. Green, “Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators,” Nature, vol. 347, no. 6294, pp. 645–650, 1990. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Desvergne and W. Wahli, “Peroxisome proliferator-activated receptors: nuclear control of metabolism,” Endocrine Reviews, vol. 20, no. 5, pp. 649–688, 1999. View at Google Scholar · View at Scopus
  28. D. M. Kendall, C. J. Rubin, P. Mohideen et al., “Improvement of glycemic control, triglycerides, and HDL cholesterol levels with muraglitazar, a dual (α/γ) peroxisome proliferator-activated receptor activator, in patients with type 2 diabetes inadequately controlled with metformin monotherapy: a double-blind, randomized, pioglitazone-comparative study,” Diabetes Care, vol. 29, no. 5, pp. 1016–1023, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. C. V. Rizos, M. S. Elisaf, D. P. Mikhailidis, and E. N. Liberopoulos, “How safe is the use of thiazolidinediones in clinical practice?” Expert Opinion on Drug Safety, vol. 8, no. 1, pp. 15–32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. S. E. Nissen, K. Wolski, and E. J. Topol, “Effect of muraglitazar on death and major adverse cardiovascular events in patients with type 2 diabetes mellitus,” The Journal of the American Medical Association, vol. 294, no. 20, pp. 2581–2586, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. R. E. Ratner, S. Parikh, and C. Tou, “Efficacy, safety and tolerability of tesaglitazar when added to the therapeutic regimen of poorly controlled insulin-treated patients with type 2 diabetes,” Diabetes and Vascular Disease Research, vol. 4, no. 3, pp. 214–221, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Dietz, P. Mohr, B. Kuhn et al., “Comparative molecular profiling of the PPARalpha/gamma activator aleglitazar: PPAR selectivity, activity and interaction with cofactors,” ChemMedChem, vol. 7, no. 6, pp. 1101–1111, 2012. View at Publisher · View at Google Scholar
  33. M. A. Cavender and A. M. Lincoff, “Therapeutic potential of aleglitazar, a new dual PPAR-alpha/gamma agonist: implications for cardiovascular disease in patients with diabetes mellitus,” American Journal of Cardiovascular Drugs, vol. 10, no. 4, pp. 209–216, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. H. A. Pershadsingh and D. M. Moore, “PPARγ agonists: potential as therapeutics for neovascular retinopathies,” PPAR Research, vol. 2008, Article ID 164273, 13 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. I. Imayama, T. Ichiki, K. Inanaga et al., “Telmisartan downregulates angiotensin II type 1 receptor through activation of peroxisome proliferator-activated receptor γ,” Cardiovascular Research, vol. 72, no. 1, pp. 184–190, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. D. V. Erbe, K. Gartrell, Y. L. Zhang et al., “Molecular activation of PPARγ by angiotensin II type 1-receptor antagonists,” Vascular Pharmacology, vol. 45, no. 3, pp. 154–162, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. B. Cariou, Y. Zair, B. Staels, and E. Bruckert, “Effects of the new dual PPAR alpha/delta agonist GFT505 on lipid and glucose homeostasis in abdominally obese patients with combined dyslipidemia or impaired glucose metabolism,” Diabetes Care, vol. 34, no. 9, pp. 2008–2014, 2011. View at Publisher · View at Google Scholar
  38. A. A. Herzlich, X. Ding, D. Shen, R. J. Ross, J. Tuo, and C. C. Chan, “Peroxisome proliferator-activated receptor expression in murine models and humans with age-related macular degeneration,” The Open Biology Journal, vol. 2, pp. 141–148, 2009. View at Publisher · View at Google Scholar
  39. M. A. Dwyer, D. Kazmin, P. Hu, D. P. McDonnell, and G. Malek, “Research resource: nuclear receptor atlas of human retinal pigment epithelial cells: potential relevance to age-related macular degeneration,” Molecular Endocrinology, vol. 25, no. 2, pp. 360–372, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Qin, A. P. McLaughlin, and G. W. De Vries, “Protection of RPE cells from oxidative injury by 15-deoxy-Δ 12,14-prostaglandin J2 by augmenting GSH and activating MAPK,” Investigative Ophthalmology & Visual Science, vol. 47, no. 11, pp. 5098–5105, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. F. Wang, L. Gao, B. Gong et al., “Tissue-specific expression of PPAR mRNAs in diabetic rats and divergent effects of cilostazol,” Canadian Journal of Physiology and Pharmacology, vol. 86, no. 7, pp. 465–471, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Tawfik, T. Sanders, K. Kahook, S. Akeel, A. Elmarakby, and M. Al-Shabrawey, “Suppression of retinal peroxisome proliferator-activated receptor γ in experimental diabetes and oxygen-induced retinopathy: role of NADPH oxidase,” Investigative Ophthalmology & Visual Science, vol. 50, no. 2, pp. 878–884, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. V. Costa, A. Casamassimi, K. Esposito et al., “Characterization of a novel polymorphism in PPARG regulatory region associated with type 2 diabetes and diabetic retinopathy in Italy,” Journal of Biomedicine and Biotechnology, vol. 2009, Article ID 126917, 7 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. M. G. Petrovič, T. Kunej, B. Peterlin, P. Dovč, and D. Petrovič, “Gly482Ser polymorphism of the peroxisome proliferator-activated receptor-γ coactivator-1 gene might be a risk factor for diabetic retinopathy in Slovene population (Caucasians) with type 2 diabetes and the Pro12Ala polymorphism of the PPARγ gene is not,” Diabetes/Metabolism Research and Reviews, vol. 21, no. 5, pp. 470–474, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. C. Hernandez and R. Simo, “Neuroprotection in diabetic retinopathy,” Current Diabetes Reports, vol. 12, no. 4, pp. 329–337, 2012. View at Publisher · View at Google Scholar
  46. R. Simo and C. Hernandez, “Neurodegeneration is an early event in diabetic retinopathy: therapeutic implications,” British Journal of Ophthalmology, vol. 96, no. 10, pp. 1285–1290, 2012. View at Google Scholar
  47. E. Carrasco, C. Hernández, A. Miralles, P. Huguet, J. Farrés, and R. Simó, “Lower somatostatin expression is an early event in diabetic retinopathy and is associated with retinal neurodegeneration,” Diabetes Care, vol. 30, no. 11, pp. 2902–2908, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Garcia-Ramírez, C. Hernández, M. Villarroel et al., “Interphotoreceptor retinoid-binding protein (IRBP) is downregulated at early stages of diabetic retinopathy,” Diabetologia, vol. 52, no. 12, pp. 2633–2641, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. H. W. van Dijk, F. D. Verbraak, P. H. B. Kok et al., “Decreased retinal ganglion cell layer thickness in patients with type 1 diabetes,” Investigative Ophthalmology & Visual Science, vol. 51, no. 7, pp. 3660–3665, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. E. Rungger-Brändle, A. A. Dosso, and P. M. Leuenberger, “Glial reactivity, an early feature of diabetic retinopathy,” Investigative Ophthalmology & Visual Science, vol. 41, no. 7, pp. 1971–1980, 2000. View at Google Scholar
  51. C. Gerhardinger, M. B. Costa, M. C. Coulombe, I. Toth, T. Hoehn, and P. Grosu, “Expression of acute-phase response proteins in retinal Müller cells in diabetes,” Investigative Ophthalmology & Visual Science, vol. 46, no. 1, pp. 349–357, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. E. Lieth, A. J. Barber, B. Xu et al., “Glial reactivity and impaired glutamate metabolism in short- term experimental diabetic retinopathy. Penn State Retina Research Group,” Diabetes, vol. 47, pp. 815–820, 1998. View at Google Scholar
  53. E. Lieth, K. F. LaNoue, D. A. Antonetti, and M. Ratz, “Diabetes reduces glutamate oxidation and glutamine synthesis in the retina. The Penn State Retina Research Group,” Experimental Eye Research, vol. 70, no. 6, pp. 723–730, 2000. View at Publisher · View at Google Scholar · View at Scopus
  54. R. A. Kowluru, R. L. Engerman, G. L. Case, and T. S. Kern, “Retinal glutamate in diabetes and effect of antioxidants,” Neurochemistry International, vol. 38, no. 5, pp. 385–390, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. J. E. Pulido, J. S. Pulido, J. C. Erie et al., “A role for excitatory amino acids in diabetic eye disease,” Experimental Diabesity Research, vol. 2007, Article ID 36150, 7 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. K. Ng, X. X. Zeng, and E. A. Ling, “Expression of glutamate receptors and calcium-binding proteins in the retina of streptozotocin-induced diabetic rats,” Brain Research, vol. 1018, no. 1, pp. 66–72, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. A. R. Santiago, J. M. Gaspar, F. I. Baptista et al., “Diabetes changes the levels of ionotropic glutamate receptors in the rat retina,” Molecular Vision, vol. 15, pp. 1620–1630, 2009. View at Google Scholar · View at Scopus
  58. P. Aoun, J. W. Simpkins, and N. Agarwal, “Role of PPAR-γ ligands in neuroprotection against glutamate-induced cytotoxicity in retinal ganglion cells,” Investigative Ophthalmology & Visual Science, vol. 44, no. 7, pp. 2999–3004, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Bernardo, G. Levi, and L. Minghetti, “Role of the peroxisome proliferator-activated receptor-γ (PPAR-γ) and its natural ligand 15-deoxy-Δ(12,14)-prostaglandin J2 in the regulation of microglial functions,” European Journal of Neuroscience, vol. 12, no. 7, pp. 2215–2223, 2000. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Bernardo, M. A. Ajmone-Cat, L. Gasparini, E. Ongini, and L. Minghetti, “Nuclear receptor peroxisome proliferator-activated receptor-γ is activated in rat microglial cells by the anti-inflammatory drug HCT1026, a derivative of flurbiprofen,” Journal of Neurochemistry, vol. 92, no. 4, pp. 895–903, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. P. Li, X. Xu, Z. Zheng, B. Zhu, Y. Shi, and K. Liu, “Protective effects of rosiglitazone on retinal neuronal damage in diabetic rats,” Current Eye Research, vol. 36, no. 7, pp. 673–679, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. E. L. Fletcher, J. A. Phipps, M. M. Ward, K. A. Vessey, and J. L. Wilkinson-Berka, “The renin-angiotensin system in retinal health and disease: its influence on neurons, glia and the vasculature,” Progress in Retinal and Eye Research, vol. 29, no. 4, pp. 284–311, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. S. Sarlos and J. L. Wilkinson-Berka, “The renin-angiotensin system and the developing retinal vasculature,” Investigative Ophthalmology & Visual Science, vol. 46, no. 3, pp. 1069–1077, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. N. Nagai, K. Noda, T. Urano et al., “Selective suppression of pathologic, but not physiologic, retinal neovascularization by blocking the angiotensin II type 1 receptor,” Investigative Ophthalmology & Visual Science, vol. 46, no. 3, pp. 1078–1084, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Schupp, J. Janke, R. Clasen, T. Unger, and U. Kintscher, “Angiotensin type 1 receptor blockers induce peroxisome proliferator-activated receptor-γ activity,” Circulation, vol. 109, no. 17, pp. 2054–2057, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. R. Simó, M. Villarroel, L. Corraliza, C. Hernández, and M. Garcia-Ramírez, “The retinal pigment epithelium: something more than a constituent of the blood-retinal barrier—implications for the pathogenesis of diabetic retinopathy,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 190724, 15 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. A. V. Ershov and N. G. Bazan, “Photoreceptor phagocytosis selectively activates PPARgamma expression in retinal pigment epithelial cells,” Journal of Neuroscience Research, vol. 60, pp. 328–337, 2000. View at Google Scholar
  68. N. Toda and M. Nakanishi-Toda, “Nitric oxide: ocular blood flow, glaucoma, and diabetic retinopathy,” Progress in Retinal and Eye Research, vol. 26, no. 3, pp. 205–238, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. A. Ergul, “Endothelin-1 and diabetic complications: focus on the vasculature,” Pharmacological Research, vol. 63, no. 6, pp. 477–482, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. J. Kim, Y. S. Oh, and S. H. Shinn, “Troglitazone reverses the inhibition of nitric oxide production by high glucose in cultured bovine retinal pericytes,” Experimental Eye Research, vol. 81, no. 1, pp. 65–70, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. T. Omae, T. Nagaoka, I. Tanano, and A. Yoshida, “Pioglitazone, a peroxisome proliferator-activated receptor-gamma agonist, induces dilation of isolated porcine retinal arterioles: role of nitric oxide and potassium channels,” Investigative Ophthalmology & Visual Science, vol. 52, no. 9, pp. 6749–6756, 2011. View at Publisher · View at Google Scholar
  72. H. Satoh, K. Tsukamoto, Y. Hashimoto et al., “Thiazolidinediones suppress endothelin-1 secretion from bovine vascular endothelial cells: a new possible role of PPARγ on vascular endothelial function,” Biochemical and Biophysical Research Communications, vol. 254, no. 3, pp. 757–763, 1999. View at Publisher · View at Google Scholar · View at Scopus
  73. D. Ray, M. Mishra, S. Ralph, I. Read, R. Davies, and P. Brenchley, “Association of the VEGF gene with proliferative diabetic retinopathy but not proteinuria in diabetes,” Diabetes, vol. 53, no. 3, pp. 861–864, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Colucciello, “Vision loss due to macular edema induced by rosiglitazone treatment of diabetes mellitus,” Archives of Ophthalmology, vol. 123, no. 9, pp. 1273–1275, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. E. H. Ryan Jr., D. P. Han, R. C. Ramsay et al., “Diabetic macular edema associated with glitazone use,” Retina, vol. 26, no. 5, pp. 562–570, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. N. V. Niemeyer and L. M. Janney, “Thiazolidinedione-induced edema,” Pharmacotherapy, vol. 22, no. 7, pp. 924–929, 2002. View at Google Scholar · View at Scopus
  77. D. S. Fong and R. Contreras, “Glitazone use associated with diabetic macular edema,” American Journal of Ophthalmology, vol. 147, no. 4, pp. 583.e1–586.e1, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. I. Idris, G. Warren, and R. Donnelly, “Association between thiazolidinedione treatment and risk of macular edema among patients with type 2 diabetes,” Archives of Internal Medicine, vol. 172, no. 13, pp. 1005–1011, 2012. View at Publisher · View at Google Scholar
  79. W. T. Ambrosius, R. P. Danis, D. C. Goff Jr. et al., “Lack of association between thiazolidinediones and macular edema in type 2 diabetes: the ACCORD eye substudy,” Archives of Ophthalmology, vol. 128, no. 3, pp. 312–318, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. M. Colucciello and E. Ryan, “Macular edema and thiazolidinediones,” Archives of Ophthalmology, vol. 128, no. 12, pp. 1630–1631, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. K. Muranaka, Y. Yanagi, Y. Tamaki et al., “Effects of peroxisome proliferator-activated receptor γ and its ligand on blood-retinal barrier in a streptozotocin-induced diabetic model,” Investigative Ophthalmology & Visual Science, vol. 47, no. 10, pp. 4547–4552, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. Z. Zheng, H. Chen, H. Wang et al., “Improvement of retinal vascular injury in diabetic rats by statins is associated with the inhibition of mitochondrial reactive oxygen species pathway mediated by peroxisome proliferator-activated receptor γ coactivator 1α,” Diabetes, vol. 59, no. 9, pp. 2315–2325, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. D. K. Coletta, A. Sriwijitkamol, E. Wajcberg et al., “Pioglitazone stimulates AMP-activated protein kinase signalling and increases the expression of genes involved in adiponectin signalling, mitochondrial function and fat oxidation in human skeletal muscle in vivo: a randomised trial,” Diabetologia, vol. 52, no. 4, pp. 723–732, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. K. Yamakawa, M. Hosoi, H. Koyama et al., “Peroxisome proliferator-activated receptor-γ agonists increase vascular endothelial growth factor expression in human vascular smooth muscle cells,” Biochemical and Biophysical Research Communications, vol. 271, no. 3, pp. 571–574, 2000. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Emoto, T. Anno, Y. Sato et al., “Troglitazone treatment increases plasma vascular endothelial growth factor in diabetic patients and its mRNA in 3T3-L1 adipocytes,” Diabetes, vol. 50, no. 5, pp. 1166–1170, 2001. View at Google Scholar · View at Scopus
  86. V. Chintalgattu, G. S. Harris, S. M. Akula, and L. C. Katwa, “PPAR-γ agonists induce the expression of VEGF and its receptors in cultured cardiac myofibroblasts,” Cardiovascular Research, vol. 74, no. 1, pp. 140–150, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. T. Murata, Y. Hata, T. Ishibashi et al., “Response of experimental retinal neovascularization to thiazolidinediones,” Archives of Ophthalmology, vol. 119, no. 5, pp. 709–717, 2001. View at Google Scholar · View at Scopus
  88. A. Aljada, L. O'Connor, Y. Y. Fu, and S. A. Mousa, “PPARγ ligands, rosiglitazone and pioglitazone, inhibit bFGF- and VEGF-mediated angiogenesis,” Angiogenesis, vol. 11, no. 4, pp. 361–367, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. A. Higuchi, K. Ohashi, R. Shibata, S. Sono-Romanelli, K. Walsh, and N. Ouchi, “Thiazolidinediones reduce pathological neovascularization in ischemic retina via an adiponectin-dependent mechanism,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 1, pp. 46–53, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. G. A. Rodrigues, F. Maurier-Mahé, D. L. Shurland et al., “Differential effects of PPARγ ligands on oxidative stress-induced death of retinal pigmented epithelial cells,” Investigative Ophthalmology & Visual Science, vol. 52, no. 2, pp. 890–903, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. H. Hatanaka, N. Koizumi, N. Okumura et al., “Epithelial-mesenchymal transition-like phenotypic changes of retinal pigment epithelium induced by TGF-β are prevented by PPAR-γ agonists,” Investigative Ophthalmology & Visual Science, vol. 53, no. 11, pp. 6955–6963, 2012. View at Publisher · View at Google Scholar
  92. L. Q. Shen, A. Child, G. M. Weber, J. Folkman, and L. P. Aiello, “Rosiglitazone and delayed onset of proliferative diabetic retinopathy,” Archives of Ophthalmology, vol. 126, no. 6, pp. 793–799, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. V. Pasceri, H. D. Wu, J. T. Willerson, and E. T. H. Yeh, “Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-γ activators,” Circulation, vol. 101, no. 3, pp. 235–238, 2000. View at Google Scholar · View at Scopus
  94. M. Ricote, A. C. Li, T. M. Willson, C. J. Kelly, and C. K. Glass, “The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation,” Nature, vol. 391, no. 6662, pp. 79–82, 1998. View at Publisher · View at Google Scholar · View at Scopus
  95. H. Shu, B. Wong, G. Zhou et al., “Activation of PPARα or γ reduces secretion of matrix metalloproteinase 9 but not interleukin 8 from human monocytic THP-1 cells,” Biochemical and Biophysical Research Communications, vol. 267, no. 1, pp. 345–349, 2000. View at Publisher · View at Google Scholar · View at Scopus
  96. T. Ishizuka, S. Itaya, H. Wada et al., “Differential effect of the antidiabetic thiazolidinediones troglitazone and pioglitazone on human platelet aggregation mechanism,” Diabetes, vol. 47, no. 9, pp. 1494–1500, 1998. View at Google Scholar · View at Scopus
  97. B. P. Harrold, V. J. Marmion, and K. R. Gough, “A double-blind controlled trial of clofibrate in the treatment of diabetic retinopathy,” Diabetes, vol. 18, no. 5, pp. 285–291, 1969. View at Google Scholar · View at Scopus
  98. P. A. Dorne, “Exudative diabetic retinopathy. The use of clofibrate in the treatment of hard exudates using a reduced but prolonged dosage over several years,” Archives d'Ophtalmologie, vol. 37, no. 5, pp. 393–400, 1977. View at Google Scholar · View at Scopus
  99. A. Keech, R. J. Simes, P. Barter et al., “Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial,” The Lancet, vol. 366, no. 9500, pp. 1849–1861, 2005. View at Publisher · View at Google Scholar
  100. A. C. Keech, P. Mitchell, P. A. Summanen et al., “Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial,” The Lancet, vol. 370, no. 9600, pp. 1687–1697, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. E. Y. Chew, W. T. Ambrosius, M. D. Davis et al., “Effects of medical therapies on retinopathy progression in type 2 diabetes,” The New England Journal of Medicine, vol. 363, no. 3, pp. 233–244, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. R. Simó and C. Hernández, “Fenofibrate for diabetic retinopathy,” The Lancet, vol. 370, no. 9600, pp. 1667–1668, 2007. View at Publisher · View at Google Scholar · View at Scopus
  103. H. N. Ginsberg, M. B. Elam, L. C. Lovato et al., “Effects of combination lipid therapy in type 2 diabetes mellitus,” The New England Journal of Medicine, vol. 362, no. 17, pp. 1563–1574, 2010. View at Publisher · View at Google Scholar · View at Scopus
  104. M. García-Ramírez, F. Canals, C. Hernández et al., “Proteomic analysis of human vitreous fluid by fluorescence-based difference gel electrophoresis (DIGE): a new strategy for identifying potential candidates in the pathogenesis of proliferative diabetic retinopathy,” Diabetologia, vol. 50, no. 6, pp. 1294–1303, 2007. View at Publisher · View at Google Scholar · View at Scopus
  105. R. Simo, M. Garcia-Ramirez, M. Higuera, and C. Hernandez, “Apolipoprotein A1 is overexpressed in the retina of diabetic patients,” American Journal of Ophthalmology, vol. 147, no. 2, pp. 319.e1–325.e1, 2009. View at Publisher · View at Google Scholar
  106. B. Staels, J. Dallongeville, J. Auwerx, K. Schoonjans, E. Leitersdorf, and J. C. Fruchart, “Mechanism of action of fibrates on lipid and lipoprotein metabolism,” Circulation, vol. 98, no. 19, pp. 2088–2093, 1998. View at Google Scholar · View at Scopus
  107. R. Arakawa, N. Tamehiro, T. Nishimaki-Mogami, K. Ueda, and S. Yokoyama, “Fenofibric acid, an active form of fenofibrate, increases apolipoprotein A-I-mediated high-density lipoprotein biogenesis by enhancing transcription of ATP-binding cassette transporter A1 gene in a liver X receptor-dependent manner,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 6, pp. 1193–1197, 2005. View at Publisher · View at Google Scholar · View at Scopus
  108. M. B. Sasongko, T. Y. Wong, T. T. Nguyen, J. E. Shaw, A. J. Jenkins, and J. J. Wang, “Novel versus traditional risk markers for diabetic retinopathy,” Diabetologia, vol. 55, no. 3, pp. 666–670, 2012. View at Publisher · View at Google Scholar
  109. R. Bordet, T. Ouk, O. Petrault et al., “PPAR: a new pharmacological target for neuroprotection in stroke and neurodegenerative diseases,” Biochemical Society Transactions, vol. 34, no. 6, pp. 1341–1346, 2006. View at Publisher · View at Google Scholar · View at Scopus
  110. H. Murakami, R. Murakami, F. Kambe et al., “Fenofibrate activates AMPK and increases eNOS phosphorylation in HUVEC,” Biochemical and Biophysical Research Communications, vol. 341, no. 4, pp. 973–978, 2006. View at Publisher · View at Google Scholar · View at Scopus
  111. M. Zanetti, A. Stocca, B. Dapas et al., “Inhibitory effects of fenofibrate on apoptosis and cell proliferation in human endothelial cells in high glucose,” Journal of Molecular Medicine, vol. 86, no. 2, pp. 185–195, 2008. View at Publisher · View at Google Scholar · View at Scopus
  112. A. Tomizawa, Y. Hattori, T. Inoue, S. Hattori, and K. Kasai, “Fenofibrate suppresses microvascular inflammation and apoptosis through adenosine monophosphate-activated protein kinase activation,” Metabolism, vol. 60, no. 4, pp. 513–522, 2011. View at Publisher · View at Google Scholar · View at Scopus
  113. J. Kim, J. H. Ahn, J. H. Kim et al., “Fenofibrate regulates retinal endothelial cell survival through the AMPK signal transduction pathway,” Experimental Eye Research, vol. 84, no. 5, pp. 886–893, 2007. View at Publisher · View at Google Scholar · View at Scopus
  114. S. Miranda, A. Gonzalez-Rodriguez, M. Garcia-Ramirez et al., “Beneficial effects of fenofibrate in retinal pigment epithelium by the modulation of stress and survival signaling under diabetic conditions,” Journal of Cellular Physiology, vol. 227, no. 6, pp. 2352–2362, 2012. View at Google Scholar
  115. D. A. Antonetti, R. Klein, and T. W. Gardner, “Diabetic retinopathy,” The New England Journal of Medicine, vol. 366, pp. 1227–1239, 2012. View at Publisher · View at Google Scholar
  116. G. Chinetti, S. Griglio, M. Antonucci et al., “Activation of proliferator-activated receptors α and γ induces apoptosis of human monocyte-derived macrophages,” The Journal of Biological Chemistry, vol. 273, no. 40, pp. 25573–25580, 1998. View at Publisher · View at Google Scholar · View at Scopus
  117. Z. Israelian-Konaraki and P. D. Reaven, “Peroxisome proliferator-activated receptor-alpha and atherosclerosis: from basic mechanisms to clinical implications,” Cardiology, vol. 103, no. 1, pp. 1–9, 2005. View at Publisher · View at Google Scholar · View at Scopus
  118. M. Villarroel, M. Garcia-Ramirez, L. Corraliza, C. Hernandez, and R. Simo, “Fenofibric acid prevents retinal pigment epithelium disruption induced by interleukin-1beta by suppressing AMP-activated protein kinase (AMPK) activation,” Diabetologia, vol. 54, no. 6, pp. 1543–1553, 2011. View at Publisher · View at Google Scholar
  119. K. Trudeau, S. Roy, W. Guo et al., “Fenofibric acid reduces fibronectin and collagen type IV overexpression in human retinal pigment epithelial cells grown in conditions mimicking the diabetic milieu: functional implications in retinal permeability,” Investigative Ophthalmology & Visual Science, vol. 52, pp. 6348–6354, 2011. View at Publisher · View at Google Scholar
  120. I. Inoue, K. Shino, S. Noji, T. Awata, and S. Katayama, “Expression of peroxisome proliferator-activated receptor α (PPARα) in primary cultures of human vascular endothelial cells,” Biochemical and Biophysical Research Communications, vol. 246, no. 2, pp. 370–374, 1998. View at Publisher · View at Google Scholar · View at Scopus
  121. M. Meissner, M. Stein, C. Urbich et al., “PPARα activators inhibit vascular endothelial growth factor receptor-2 expression by repressing Sp1-dependent DNA binding and transactivation,” Circulation Research, vol. 94, no. 3, pp. 324–332, 2004. View at Publisher · View at Google Scholar · View at Scopus
  122. J. Varet, L. Vincent, P. Mirshahi et al., “Fenofibrate inhibits angiogenesis in vitro and in vivo,” Cellular and Molecular Life Sciences, vol. 60, no. 4, pp. 810–819, 2003. View at Publisher · View at Google Scholar · View at Scopus
  123. Y. Yokoyama, B. Xin, T. Shigeto et al., “Clofibric acid, a peroxisome proliferator-activated receptor α ligand, inhibits growth of human ovarian cancer,” Molecular Cancer Therapeutics, vol. 6, no. 4, pp. 1379–1386, 2007. View at Publisher · View at Google Scholar · View at Scopus
  124. Y. Chen, Y. Hu, M. Lin et al., “Therapeutic effects of PPARalpha agonists on diabetic retinopathy in type 1 diabetes models,” Diabetes, vol. 62, no. 1, pp. 261–272, 2013. View at Publisher · View at Google Scholar
  125. R. L. Stephen, M. C. U. Gustafsson, M. Jarvis et al., “Activation of peroxisome proliferator-activated receptor delta stimulates the proliferation of human breast and prostate cancer cell lines,” Cancer Research, vol. 64, no. 9, pp. 3162–3170, 2004. View at Publisher · View at Google Scholar · View at Scopus