Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2014, Article ID 124583, 10 pages
http://dx.doi.org/10.1155/2014/124583
Research Article

The Proatherogenic Effect of Chronic Nitric Oxide Synthesis Inhibition in ApoE-Null Mice Is Dependent on the Presence of PPARα

The Institute of Endocrinology, Metabolism, and Hypertension, Tel Aviv-Sourasky Medical Center, The Sackler Faculty of Medicine, Tel Aviv University, 6 Weizmann Street, 64239 Tel Aviv, Israel

Received 24 August 2013; Revised 14 October 2013; Accepted 18 October 2013; Published 22 January 2014

Academic Editor: Lihong Chen

Copyright © 2014 Michal Vechoropoulos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J.-C. Fruchart, “Peroxisome proliferator-activated receptor-alpha (PPARα): at the crossroads of obesity, diabetes and cardiovascular disease,” Atherosclerosis, vol. 205, no. 1, pp. 1–8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Behar, D. Brunner, E. Kaplinsky, L. Mandelzweig, and M. Benderly, “Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease: the bezafibrate infarction prevention (BIP) study,” Circulation, vol. 102, no. 1, pp. 21–27, 2000. View at Google Scholar · View at Scopus
  3. H. B. Rubins, S. J. Robins, D. Collins et al., “Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol: veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group,” The New England Journal of Medicine, vol. 341, no. 6, pp. 410–418, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. H. N. Ginsberg, M. B. Elam, L. C. Lovato et al., “Effects of combination lipid therapy in type 2 diabetes mellitus,” The New England Journal of Medicine, vol. 362, no. 17, pp. 1563–1574, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Tordjman, C. Bernal-Mizrachi, L. Zemany et al., “PPARα deficiency reduces insulin resistance and atherosclerosis in apoE-null mice,” Journal of Clinical Investigation, vol. 107, no. 8, pp. 1025–1034, 2001. View at Google Scholar · View at Scopus
  6. K. M. Tordjman, C. F. Semenkovich, T. Coleman et al., “Absence of peroxisome proliferator-activated receptor-α abolishes hypertension and attenuates atherosclerosis in the Tsukuba hypertensive mouse,” Hypertension, vol. 50, no. 5, pp. 945–951, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. K. P. Patel and H. D. Schultz, “Angiotensin peptides and nitric oxide in cardiovascular disease,” Antioxidants and Redox Signaling, vol. 19, no. 10, 2013. View at Publisher · View at Google Scholar
  8. K. Kauser, V. da Cunha, R. Fitch, C. Mallari, and G. M. Rubanyi, “Role of endogenous nitric oxide in progression of atherosclerosis in apolipoprotein E-deficient mice,” The American Journal of Physiology, vol. 278, no. 5, pp. H1679–H1685, 2000. View at Google Scholar · View at Scopus
  9. P. J. Kuhlencordt, R. Gyurko, F. Han et al., “Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein ApoE/eNOS double-knockout mice,” Circulation, vol. 104, no. 4, pp. 448–454, 2001. View at Google Scholar · View at Scopus
  10. D. H. Sigmon, E. Gonzalez-Feldman, M. A. Cavasin, D. L. Potter, and W. H. Beierwaltes, “Role of nitric oxide in the renal hemodynamic response to unilateral nephrectomy,” Journal of the American Society of Nephrology, vol. 15, no. 6, pp. 1413–1420, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. I. Rodríguez-Gómez, J. Sainz, R. Wangensteen et al., “Increased pressor sensitivity to chronic nitric oxide deficiency in hyperthyroid rats,” Hypertension, vol. 42, no. 2, pp. 220–225, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Ish-Shalom, J. Sack, M. Vechoropoulos et al., “Low-dose calcitriol decreases aortic renin, blood pressure, and atherosclerosis in ApoE-null mice,” Journal of Atherosclerosis and Thrombosis, vol. 19, pp. 422–434, 2012. View at Google Scholar
  13. Committee for the Update of the Guide for the Care and Use of Laboratory Animals, Guide For the Care and Use of Laboratory Animals, The National Academies Press, Washington, DC, USA, 8th edition, 2011.
  14. C. Tikellis, R. J. Pickering, D. Tsorotes et al., “Activation of the Renin-Angiotensin system mediates the effects of dietary salt intake on atherogenesis in the apolipoprotein E knockout mouse,” Hypertension, vol. 60, pp. 98–105, 2012. View at Google Scholar
  15. A. Khedara, Y. Kawai, J. Kayashita, and N. Kato, “Feeding rats the nitric oxide synthase inhibitor, L-N(ω)nitroarginine, elevates serum triglyceride and cholesterol and lowers hepatic fatty acid oxidation,” Journal of Nutrition, vol. 126, no. 10, pp. 2563–2567, 1996. View at Google Scholar · View at Scopus
  16. T. Goto, S. Ohnomi, A. Khedara, N. Kato, H. Ogawa, and T. Yanagita, “Feeding the nitric oxide synthase inhibitor L-N(ω)nitroarginine elevates serum very low density lipoprotein and hepatic triglyceride synthesis in rats,” Journal of Nutritional Biochemistry, vol. 10, no. 5, pp. 274–278, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Khedara, T. Goto, J. Kayashita, and N. Kato, “Hypercholesterolemic effect in rats of a dietary addition of the nitric oxide synthase inhibitor, L-NωNitroarginine, by less synthesis of bile acids,” Bioscience, Biotechnology and Biochemistry, vol. 62, no. 4, pp. 773–777, 1998. View at Google Scholar · View at Scopus
  18. S. K. Cheema and L. B. Agellon, “The murine and human cholesterol 7α-hydroxylase gene promoters are differentially responsive to regulation by fatty acids mediated via peroxisome proliferator-activated receptor α,” Journal of Biological Chemistry, vol. 275, no. 17, pp. 12530–12536, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Song, R. R. Attia, S. Connaughton et al., “Peroxisome proliferator activated receptor α (PPARα) and PPAR gamma coactivator (PGC-1α) induce carnitine palmitoyltransferase IA (CPT-1A) via independent gene elements,” Molecular and Cellular Endocrinology, vol. 325, no. 1-2, pp. 54–63, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Tabet, E. L. Schiffrin, G. E. Callera et al., “Redox-sensitive signaling by angiotensin II involves oxidative inactivation and blunted phosphorylation of protein tyrosine phosphatase SHP-2 in vascular smooth muscle cells from SHR,” Circulation Research, vol. 103, no. 2, pp. 149–158, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Dikalova, R. Clempus, B. Lassègue et al., “Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice,” Circulation, vol. 112, no. 17, pp. 2668–2676, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. A. L. Sheehan, S. Carrell, B. Johnson, B. Stanic, B. Banfi, and F. J. Miller, “Role for Nox1 NADPH oxidase in atherosclerosis,” Atherosclerosis, vol. 216, no. 2, pp. 321–326, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Schröder, M. Zhang, S. Benkhoff et al., “Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase,” Circulation Research, vol. 110, pp. 1217–1225, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. E. A. Kirk, M. C. Dinauer, H. Rosen, A. Chait, J. W. Heinecke, and R. C. LeBoeuf, “Impaired superoxide production due to a deficiency in phagocyte NADPH oxidase fails to inhibit atherosclerosis in mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 6, pp. 1529–1535, 2000. View at Google Scholar · View at Scopus
  25. P. Ponnuswamy, E. Ostermeier, A. Schröttle et al., “Oxidative stress and compartment of gene expression determine proatherosclerotic effects of inducible nitric oxide synthase,” The American Journal of Pathology, vol. 174, no. 6, pp. 2400–2410, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Ohishi, G. J. Dusting, P. A. Fennessy, F. A. O. Mendelsohn, X. C. Li, and J. L. Zhuo, “Increased expression and co-localization of ACE, angiotensin II AT1 receptors and inducible nitric oxide synthase in atherosclerotic human coronary arteries,” International Journal of Physiology, Pathophysiology and Pharmacology, vol. 2, no. 2, pp. 111–124, 2010. View at Google Scholar · View at Scopus
  27. P. J. Kuhlencordt, J. Chen, F. Han, J. Astern, and P. L. Huang, “Genetic deficiency of inducible nitric oxide synthase reduces atherosclerosis and lowers plasma lipid peroxides in apolipoprotein E-knockout mice,” Circulation, vol. 103, no. 25, pp. 3099–3104, 2001. View at Google Scholar · View at Scopus
  28. E. Cernuda-Morollón, F. Rodríguez-Pascual, P. Klatt, S. Lamas, and D. Pérez-Sala, “PPAR agonists amplify iNOS expression while inhibiting NF-κB: implications for mesangial cell activation by cytokines,” Journal of the American Society of Nephrology, vol. 13, no. 9, pp. 2223–2231, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. G. J. Southan and C. Szabó, “Selective pharmacological inhibition of distinct nitric oxide synthase isoforms,” Biochemical Pharmacology, vol. 51, no. 4, pp. 383–394, 1996. View at Publisher · View at Google Scholar · View at Scopus