Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2015, Article ID 201625, 10 pages
http://dx.doi.org/10.1155/2015/201625
Research Article

KLF15 and PPARα Cooperate to Regulate Cardiomyocyte Lipid Gene Expression and Oxidation

1Case Cardiovascular Research Institute and Harrington Heart & Vascular Institute, Cleveland, OH 44106, USA
2Department of Medicine, University Hospitals Case Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA

Received 13 January 2015; Accepted 19 February 2015

Academic Editor: William Tadeu Festuccia

Copyright © 2015 Domenick A. Prosdocimo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. D. Lopaschuk, J. R. Ussher, C. D. L. Folmes, J. S. Jaswal, and W. C. Stanley, “Myocardial fatty acid metabolism in health and disease,” Physiological Reviews, vol. 90, no. 1, pp. 207–258, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. I. J. Goldberg, C. M. Trent, and P. C. Schulze, “Lipid metabolism and toxicity in the heart,” Cell Metabolism, vol. 15, no. 6, pp. 805–812, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. S. C. Kolwicz Jr. and R. Tian, “Metabolic therapy at the crossroad: how to optimize myocardial substrate utilization?” Trends in Cardiovascular Medicine, vol. 19, no. 6, pp. 201–207, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Boudina and E. D. Abel, “Diabetic cardiomyopathy revisited,” Circulation, vol. 115, no. 25, pp. 3213–3223, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. D. An and B. Rodrigues, “Role of changes in cardiac metabolism in development of diabetic cardiomyopathy,” The American Journal of Physiology—Heart and Circulatory Physiology, vol. 291, no. 4, pp. H1489–H1506, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Bertrand, S. Horman, C. Beauloye, and J.-L. Vanoverschelde, “Insulin signalling in the heart,” Cardiovascular Research, vol. 79, no. 2, pp. 238–248, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. E. D. Abel, K. M. O'Shea, and R. Ramasamy, “Insulin resistance: metabolic mechanisms and consequences in the heart,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 32, no. 9, pp. 2068–2076, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. J. A. Madrazo and D. P. Kelly, “The PPAR trio: regulators of myocardial energy metabolism in health and disease,” Journal of Molecular and Cellular Cardiology, vol. 44, no. 6, pp. 968–975, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. J. M. Huss and D. P. Kelly, “Nuclear receptor signaling and cardiac energetics,” Circulation Research, vol. 95, no. 6, pp. 568–578, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. Q. Yang and Y. Li, “Roles of PPARs on regulating myocardial energy and lipid homeostasis,” Journal of Molecular Medicine, vol. 85, no. 7, pp. 697–706, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. B. N. Finck, J. J. Lehman, T. C. Leone et al., “The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus,” The Journal of Clinical Investigation, vol. 109, no. 1, pp. 121–130, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. J. G. Duncan, J. L. Fong, D. M. Medeiros, B. N. Finck, and D. P. Kelly, “Insulin-resistant heart exhibits a mitochondrial biogenic response driven by the peroxisome proliferator-activated receptor-α/PGC-1α gene regulatory pathway,” Circulation, vol. 115, no. 7, pp. 909–917, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. F. M. Campbell, R. Kozak, A. Wagner et al., “A role for peroxisome proliferator-activated receptor alpha (PPARalpha ) in the control of cardiac malonyl-CoA levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPARalpha are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase,” The Journal of Biological Chemistry, vol. 277, no. 6, pp. 4098–4103, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. D. A. Prosdocimo, M. K. Sabeh, and M. K. Jain, “Kruppel-like factors in muscle health and disease,” Trends in Cardiovascular Medicine, 2014. View at Publisher · View at Google Scholar
  15. B. B. McConnell and V. W. Yang, “Mammalian Krüppel-like factors in health and diseases,” Physiological Reviews, vol. 90, no. 4, pp. 1337–1381, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. G. B. Atkins, Y. Wang, G. H. Mahabeleshwar et al., “Hemizygous deficiency of krüppel-like factor 2 augments experimental atherosclerosis,” Circulation Research, vol. 103, no. 7, pp. 690–693, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Gray, M. W. Feinberg, S. Hull et al., “The Krüppel-like factor KLF15 regulates the insulin-sensitive glucose transporter GLUT4,” Journal of Biological Chemistry, vol. 277, no. 37, pp. 34322–34328, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. S. S. Banerjee, M. W. Feinberg, M. Watanabe et al., “The Krüppel-like factor KLF2 inhibits peroxisome proliferator-activated receptor-γ expression and adipogenesis,” The Journal of Biological Chemistry, vol. 278, no. 4, pp. 2581–2584, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. D. A. Prosdocimo, P. Anand, X. Liao et al., “Kruppel-like factor 15 is a critical regulator of cardiac lipid metabolism,” Journal of Biological Chemistry, vol. 289, no. 9, pp. 5914–5924, 2014. View at Publisher · View at Google Scholar · View at Scopus
  20. X. Liao, S. M. Haldar, Y. Lu et al., “Krüppel-like factor 4 regulates pressure-induced cardiac hypertrophy,” Journal of Molecular and Cellular Cardiology, vol. 49, no. 2, pp. 334–338, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Fisch, S. Gray, S. Heymans et al., “Krüppel-like factor 15 is a regulator of cardiomyocyte hypertrophy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 17, pp. 7074–7079, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. A. R. Wende, J. M. Huss, P. J. Schaeffer, V. Giguère, and D. P. Kelly, “PGC-1α coactivates PDK4 gene expression via the orphan nuclear receptor ERRα: a mechanism for transcriptional control of muscle glucose metabolism,” Molecular and Cellular Biology, vol. 25, no. 24, pp. 10684–10694, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. S. M. Haldar, Y. Lu, D. Jeyaraj et al., “Klf15 deficiency is a molecular link between heart failure and aortic aneurysm formation,” Science Translational Medicine, vol. 2, no. 26, p. 26ra26, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Jeyaraj, S. M. Haldar, X. Wan et al., “Circadian rhythms govern cardiac repolarization and arrhythmogenesis,” Nature, vol. 483, no. 7387, pp. 96–101, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. S. M. Haldar, D. Jeyaraj, P. Anand et al., “Kruppel-like factor 15 regulates skeletal muscle lipid flux and exercise adaptation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 17, pp. 6739–6744, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. J. E. Rame, “Chronic heart failure: a reversible metabolic syndrome?” Circulation, vol. 125, no. 23, pp. 2809–2811, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Chokshi, K. Drosatos, F. H. Cheema et al., “Ventricular assist device implantation corrects myocardial lipotoxicity, reverses insulin resistance, and normalizes cardiac metabolism in patients with advanced heart failure,” Circulation, vol. 125, no. 23, pp. 2844–2853, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. S. M. Haldar, O. A. Ibrahim, and M. K. Jain, “Kruppel-like Factors (KLFs) in muscle biology,” Journal of Molecular and Cellular Cardiology, vol. 43, no. 1, pp. 1–10, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Gray, B. Wang, Y. Orihuela et al., “Regulation of gluconeogenesis by Krüppel-like factor 15,” Cell Metabolism, vol. 5, no. 4, pp. 305–312, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. P. J. H. Smeets, B. E. J. Teunissen, P. H. M. Willemsen et al., “Cardiac hypertrophy is enhanced in PPARα-/- mice in response to chronic pressure overload,” Cardiovascular Research, vol. 78, no. 1, pp. 79–89, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Miki, S. Yuda, H. Kouzu, and T. Miura, “Diabetic cardiomyopathy: pathophysiology and clinical features,” Heart Failure Reviews, vol. 18, no. 2, pp. 149–166, 2013. View at Publisher · View at Google Scholar · View at Scopus
  32. B. N. Finck, X. Han, M. Courtois et al., “A critical role for PPARα-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: modulation by dietary fat content,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 3, pp. 1226–1231, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Y. Jung, U. Chalasani, N. Pan et al., “KLF15 is a molecular link between endoplasmic reticulum stress and insulin resistance,” PLoS ONE, vol. 8, no. 10, Article ID e77851, 2013. View at Publisher · View at Google Scholar · View at Scopus
  34. J. M. Huss and D. P. Kelly, “Mitochondrial energy metabolism in heart failure: a question of balance,” The Journal of Clinical Investigation, vol. 115, no. 3, pp. 547–555, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Dowell, V. J. Peterson, T. Mark Zabriskie, and M. Leid, “Ligand-induced peroxisome proliferator-activated receptor α conformational change,” The Journal of Biological Chemistry, vol. 272, no. 3, pp. 2013–2020, 1997. View at Publisher · View at Google Scholar · View at Scopus
  36. I. Luptak, J. A. Balschi, Y. Xing, T. C. Leone, D. P. Kelly, and R. Tian, “Decreased contractile and metabolic reserve in peroxisome proliferator-activated receptor-α-null hearts can be rescued by increasing glucose transport and utilization,” Circulation, vol. 112, no. 15, pp. 2339–2346, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Miyamoto, T. Kawamura, T. Morimoto et al., “Histone acetyltransferase activity of p300 is required for the promotion of left ventricular remodeling after myocardial infarction in adult mice in vivo,” Circulation, vol. 113, no. 5, pp. 679–690, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Q. Wei, L. A. Shehadeh, J. M. Mitrani et al., “Quantitative control of adaptive cardiac hypertrophy by acetyltransferase p300,” Circulation, vol. 118, no. 9, pp. 934–946, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. H. S. Ahuja, A. Szanto, L. Nagy, and P. J. A. Davies, “The retinoid X receptor and its ligands: versatile regulators of metabolic function, cell differentiation and cell death,” Journal of Biological Regulators & Homeostatic Agents, vol. 17, no. 1, pp. 29–45, 2003. View at Google Scholar · View at Scopus
  40. P. Kastner, J. M. Grondona, M. Mark et al., “Genetic analysis of RXRα developmental function: convergence of RXR and RAR signaling pathways in heart and eye morphogenesis,” Cell, vol. 78, no. 6, pp. 987–1003, 1994. View at Publisher · View at Google Scholar · View at Scopus
  41. B. Desvergne, “RXR: from partnership to leadership in metabolic regulations,” Vitamins and Hormones, vol. 75, pp. 1–32, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. L. Ouamrane, G. Larrieu, B. Gauthier, and T. Pineau, “RXR activators molecular signalling: involvement of a PPAR alpha-dependent pathway in the liver and kidney, evidence for an alternative pathway in the heart,” British Journal of Pharmacology, vol. 138, no. 5, pp. 845–854, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. J. R. Knoedler and R. J. Denver, “Krüppel-like factors are effectors of nuclear receptor signaling,” General and Comparative Endocrinology, vol. 203, pp. 49–59, 2014. View at Publisher · View at Google Scholar · View at Scopus
  44. R. J. Denver, L. Ouellet, D. Furling, A. Kobayashil, Y. Fujii-Kuriyama, and J. Puymirat, “Basic transcription element-binding protein (BTEB) is a thyroid hormone- regulated gene in the developing central nervous system: evidence for a role in neurite outgrowth,” The Journal of Biological Chemistry, vol. 274, no. 33, pp. 23128–23134, 1999. View at Publisher · View at Google Scholar · View at Scopus
  45. K.-J. Yin, Y. Fan, M. Hamblin et al., “KLF11 mediates PPARgamma cerebrovascular protection in ischaemic stroke,” Brain, vol. 136, no. 4, pp. 1274–1287, 2013. View at Publisher · View at Google Scholar · View at Scopus
  46. X.-H. Zhang, B. Zheng, C. Gu, J.-R. Fu, and J.-K. Wen, “TGF-β1 downregulates AT1 receptor expression via PKC-δ-mediated Sp1 dissociation from KLF4 and smad-mediated PPAR-γ association with KLF4,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 32, no. 4, pp. 1015–1023, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. M. A. Wani, S. E. Wert, and J. B. Lingrel, “Lung Kruppel-like factor, a zinc finger transcription factor, is essential for normal lung development,” Journal of Biological Chemistry, vol. 274, no. 30, pp. 21180–21185, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. L. Pei, M. Leblanc, G. Barish et al., “Thyroid hormone receptor repression is linked to type i pneumocyte-associated respiratory distress syndrome,” Nature Medicine, vol. 17, no. 11, pp. 1466–1472, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. L. P. Bechmann, D. Vetter, J. Ishida et al., “Post-transcriptional activation of PPAR alpha by KLF6 in hepatic steatosis,” Journal of Hepatology, vol. 58, no. 5, pp. 1000–1006, 2013. View at Publisher · View at Google Scholar · View at Scopus
  50. J. M. P. Pabona, F. A. Simmen, M. A. Nikiforov et al., “Krüppel-like factor 9 and progesterone receptor coregulation of decidualizing endometrial stromal cells: implications for the pathogenesis of endometriosis,” Journal of Clinical Endocrinology and Metabolism, vol. 97, no. 3, pp. E376–E392, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Loft, I. Forss, M. S. Siersbæk et al., “Browning of human adipocytes requires KLF11 and reprogramming of PPARγ superenhancers,” Genes & Development, vol. 29, no. 1, pp. 7–22, 2015. View at Publisher · View at Google Scholar
  52. K. Masuno, S. M. Haldar, D. Jeyaraj et al., “Expression profiling identifies klf15 as a glucocorticoid target that regulates airway hyperresponsiveness,” The American Journal of Respiratory Cell and Molecular Biology, vol. 45, no. 3, pp. 642–649, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. S. K. Sasse, C. M. Mailloux, A. J. Barczak et al., “The glucocorticoid receptor and KLF15 regulate gene expression dynamics and integrate signals through feed-forward circuitry,” Molecular and Cellular Biology, vol. 33, no. 11, pp. 2104–2115, 2013. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. Oishi, I. Manabe, K. Tobe et al., “SUMOylation of Krüppel-like transcription factor 5 acts as a molecular switch in transcriptional programs of lipid metabolism involving PPAR-δ,” Nature Medicine, vol. 14, no. 6, pp. 656–666, 2008. View at Publisher · View at Google Scholar · View at Scopus