Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2017, Article ID 8252796, 8 pages
https://doi.org/10.1155/2017/8252796
Review Article

PPAR Agonists for the Prevention and Treatment of Lung Cancer

1Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
2Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA

Correspondence should be addressed to Raju C. Reddy; ude.cmpu@crydder

Received 15 August 2016; Accepted 8 December 2016; Published 20 February 2017

Academic Editor: Valeria Amodeo

Copyright © 2017 Sowmya P. Lakshmi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Ferlay, I. Soerjomataram, R. Dikshit et al., “Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012,” International Journal of Cancer, vol. 136, no. 5, pp. E359–E386, 2015. View at Publisher · View at Google Scholar · View at Scopus
  2. R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2016,” CA Cancer Journal for Clinicians, vol. 66, no. 1, pp. 7–30, 2016. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Malhotra, M. Malvezzi, E. Negri, C. La Vecchia, and P. Boffetta, “Risk factors for lung cancer worldwide,” European Respiratory Journal, vol. 48, no. 3, pp. 889–902, 2016. View at Publisher · View at Google Scholar
  4. L. Shi, L. Wang, J. Hou et al., “Targeting roles of inflammatory microenvironment in lung cancer and metastasis,” Cancer and Metastasis Reviews, vol. 34, no. 2, pp. 319–331, 2015. View at Publisher · View at Google Scholar · View at Scopus
  5. G. P. Kalemkerian, W. Akerley, P. Bogner et al., “Small cell lung cancer,” Journal of the National Comprehensive Cancer Network, vol. 11, no. 1, pp. 78–98, 2013. View at Google Scholar · View at Scopus
  6. Y. Sekido, K. M. Fong, and J. D. Minna, “Progress in understanding the molecular pathogenesis of human lung cancer,” Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, vol. 1378, no. 1, pp. F21–F59, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. D. S. Ettinger, D. E. Wood, W. Akerley et al., “NCCN guidelines insights: non-small cell lung cancer, version 4.2016,” JNCCN Journal of the National Comprehensive Cancer Network, vol. 14, no. 3, pp. 255–264, 2016. View at Google Scholar · View at Scopus
  8. V. G. Keshamouni, S. Han, and J. Roman, “Peroxisome proliferator-activated receptors in lung cancer,” PPAR Research, vol. 2007, Article ID 90289, 10 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. P. E. Almeida, A. B. Carneiro, A. R. Silva, and P. T. Bozza, “PPARγ expression and function in mycobacterial infection: roles in lipid metabolism, immunity, and bacterial killing,” PPAR Research, vol. 2012, Article ID 383829, 7 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. R. B. Clark, “The role of PPARs in inflammation and immunity,” Journal of Leukocyte Biology, vol. 71, no. 3, pp. 388–400, 2002. View at Google Scholar · View at Scopus
  11. L. Michalik, B. Desvergne, and W. Wahli, “Peroxisome-proliferator-activated receptors and cancers: complex stories,” Nature Reviews Cancer, vol. 4, no. 1, pp. 61–70, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Michalik and W. Wahli, “PPARs mediate lipid signaling in inflammation and cancer,” PPAR Research, vol. 2008, Article ID 134059, 15 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. J. E. Ward and X. Tan, “Peroxisome proliferator activated receptor ligands as regulators of airway inflammation and remodelling in chronic lung disease,” PPAR Research, vol. 2007, Article ID 14983, 12 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. J. M. Peters, Y. M. Shah, and F. J. Gonzalez, “The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention,” Nature Reviews Cancer, vol. 12, no. 3, pp. 181–195, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. B. P. Kota, T. H.-W. Huang, and B. D. Roufogalis, “An overview on biological mechanisms of PPARs,” Pharmacological Research, vol. 51, no. 2, pp. 85–94, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Tachibana, D. Yamasaki, K. Ishimoto, and T. Doi, “The role of PPARs in cancer,” PPAR Research, vol. 2008, Article ID 102737, 15 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. A. K. Reka, M. T. Goswami, R. Krishnapuram, T. J. Standiford, and V. G. Keshamouni, “Molecular cross-regulation between PPAR-γ and other signaling pathways: implications for lung cancer therapy,” Lung Cancer, vol. 72, no. 2, pp. 154–159, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Y. Li, T. W. Lee, A. P. Yim, and G. G. Chen, “Function of Pparγ and its ligands in lung cancer,” Critical Reviews in Clinical Laboratory Sciences, vol. 43, no. 2, pp. 183–202, 2006. View at Publisher · View at Google Scholar
  19. V. R. Narala, R. K. Adapala, M. V. Suresh, T. G. Brock, M. Peters-Golden, and R. C. Reddy, “Leukotriene B4 is a physiologically relevant endogenous peroxisome proliferator-activated receptor-α agonist,” Journal of Biological Chemistry, vol. 285, no. 29, pp. 22067–22074, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. R. A. Daynes and D. C. Jones, “Emerging roles of PPARs in inflammation and immunity,” Nature Reviews Immunology, vol. 2, no. 10, pp. 748–759, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Li, J. Zhang, F. J. Schopfer et al., “Molecular recognition of nitrated fatty acids by PPARγ,” Nature Structural & Molecular Biology, vol. 15, no. 8, pp. 865–867, 2008. View at Google Scholar
  22. A. T. Reddy, S. P. Lakshmi, Y. Zhang, and R. C. Reddy, “Nitrated fatty acids reverse pulmonary fibrosis by dedifferentiating myofibroblasts and promoting collagen uptake by alveolar macrophages,” The FASEB Journal, vol. 28, no. 12, pp. 5299–5310, 2014. View at Publisher · View at Google Scholar
  23. J. Berger and D. E. Moller, “The mechanisms of action of PPARs,” Annual Review of Medicine, vol. 53, pp. 409–435, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. M.-Y. Li, H. Yuan, L. T. Ma et al., “Roles of peroxisome proliferator-activated receptor-α and -γ in the development of non-small cell lung cancer,” American Journal of Respiratory Cell and Molecular Biology, vol. 43, no. 6, pp. 674–683, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. T. V. Pedchenko, A. L. Gonzalez, D. Wang, R. N. DuBois, and P. P. Massion, “Peroxisome proliferator-activated receptor β/δ expression and activation in lung cancer,” American Journal of Respiratory Cell and Molecular Biology, vol. 39, no. 6, pp. 689–696, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. K.-I. Inoue, Y. Kawahito, Y. Tsubouchi et al., “Expression of peroxisome proliferator-activated receptor (PPAR)-γ in human lung cancer,” Anticancer Research, vol. 21, no. 4A, pp. 2471–2476, 2001. View at Google Scholar · View at Scopus
  27. I. Issemann and S. Green, “Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators,” Nature, vol. 347, no. 6294, pp. 645–650, 1990. View at Publisher · View at Google Scholar · View at Scopus
  28. J. M. Peters, R. C. Cattley, and F. J. Gonzalez, “Role of PPARα in the mechanism of action of the nongenotoxic carcinogen and peroxisome proliferator Wy-14,643,” Carcinogenesis, vol. 18, no. 11, pp. 2029–2033, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Kaipainen, M. W. Kieran, S. Huang et al., “PPARα deficiency in inflammatory cells suppresses tumor growth,” PLOS ONE, vol. 2, no. 2, article e260, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Panigrahy, A. Kaipainen, S. Huang et al., “PPARα agonist fenofibrate suppresses tumor growth through direct and indirect angiogenesis inhibition,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 3, pp. 985–990, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Pozzi, M. R. Ibanez, A. E. Gatica et al., “Peroxisomal proliferator-activated receptor-α-dependent inhibition of endothelial cell proliferation and tumorigenesis,” Journal of Biological Chemistry, vol. 282, no. 24, pp. 17685–17695, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. N. Skrypnyk, X. Chen, W. Hu et al., “PPARα activation can help prevent and treat non-small cell lung cancer,” Cancer Research, vol. 74, no. 2, pp. 621–631, 2014. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Kuno, K. Hata, M. Takamatsu et al., “The peroxisome proliferator-activated receptor (PPAR) α agonist fenofibrate suppresses chemically induced lung alveolar proliferative lesions in male obese hyperlipidemic mice,” International Journal of Molecular Sciences, vol. 15, no. 5, pp. 9160–9172, 2014. View at Publisher · View at Google Scholar · View at Scopus
  34. A. D. Burdick, D. J. Kim, M. A. Peraza, F. J. Gonzalez, and J. M. Peters, “The role of peroxisome proliferator-activated receptor-β/δ in epithelial cell growth and differentiation,” Cellular Signalling, vol. 18, no. 1, pp. 9–20, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. L. Yang, H. Zhang, Z.-G. Zhou, H. Yan, G. Adell, and X.-F. Sun, “Biological function and prognostic significance of peroxisome proliferator-activated receptor δ in rectal cancer,” Clinical Cancer Research, vol. 17, no. 11, pp. 3760–3770, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. B. H. Park, B. Vogelstein, and K. W. Kinzler, “Genetic disruption of PPARδ decreases the tumorigenicity of human colon cancer cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 5, pp. 2598–2603, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Fukumoto, Y. Yano, N. Virgona et al., “Peroxisome proliferator-activated receptor δ as a molecular target to regulate lung cancer cell growth,” FEBS Letters, vol. 579, no. 17, pp. 3829–3836, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. R. L. Keith, Y. E. Miller, T. M. Hudish et al., “Pulmonary prostacyclin synthase overexpression chemoprevents tobacco smoke lung carcinogenesis in mice,” Cancer Research, vol. 64, no. 16, pp. 5897–5904, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. R. L. Keith, Y. E. Miller, Y. Hoshikawa et al., “Manipulation of pulmonary prostacyclin synthase expression prevents murine lung cancer,” Cancer Research, vol. 62, no. 3, pp. 734–740, 2002. View at Google Scholar · View at Scopus
  40. S. Müller-Brüsselbach, S. Ebrahimsade, J. Jäkel et al., “Growth of transgenic RAF-induced lung adenomas is increased in mice with a disrupted PPARbeta/delta gene,” International Journal of Oncology, vol. 31, no. 3, pp. 607–611, 2007. View at Google Scholar · View at Scopus
  41. Z. Haskova, B. Hoang, G. Luo et al., “Modulation of LPS-induced pulmonary neutrophil infiltration and cytokine production by the selective PPARβ/δ ligand GW0742,” Inflammation Research, vol. 57, no. 7, pp. 314–321, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Di Paola, C. Crisafulli, E. Mazzon et al., “GW0742, a high-affinity PPAR -β/δ agonist, inhibits acute lung injury in mice,” Shock, vol. 33, no. 4, pp. 426–435, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. D. R. Brenner, D. Scherer, K. Muir et al., “A review of the application of inflammatory biomarkers in epidemiologic cancer research,” Cancer Epidemiology Biomarkers and Prevention, vol. 23, no. 9, pp. 1729–1751, 2014. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Müller-Brüsselbach, M. Kömhoff, M. Rieck et al., “Deregulation of tumor angiogenesis and blockade of tumor growth in PPARβ-deficient mice,” EMBO Journal, vol. 26, no. 15, pp. 3686–3698, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. P. He, M. G. Borland, B. Zhu et al., “Effect of ligand activation of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) in human lung cancer cell lines,” Toxicology, vol. 254, no. 1-2, pp. 112–117, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. P. S. Palkar, M. G. Borland, S. Naruhn et al., “Cellular and pharmacological selectivity of the peroxisome proliferator-activated receptor-β/δ antagonist GSK3787,” Molecular Pharmacology, vol. 78, no. 3, pp. 419–430, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. T.-H. Chang and E. Szabo, “Induction of differentiation and apoptosis by ligands of peroxisome proliferator-activated receptor γ in non-small cell lung cancer,” Cancer Research, vol. 60, no. 4, pp. 1129–1138, 2000. View at Google Scholar · View at Scopus
  48. Y. Tsubouchi, H. Sano, Y. Kawahito et al., “Inhibition of human lung cancer cell growth by the peroxisome proliferator-activated receptor-γ agonists through induction of apoptosis,” Biochemical and Biophysical Research Communications, vol. 270, no. 2, pp. 400–405, 2000. View at Publisher · View at Google Scholar · View at Scopus
  49. W. Guo and F. G. Giancotti, “Integrin signalling during tumour progression,” Nature Reviews Molecular Cell Biology, vol. 5, no. 10, pp. 816–826, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. G. Bergers and L. E. Benjamin, “Tumorigenesis and the angiogenic switch,” Nature Reviews Cancer, vol. 3, no. 6, pp. 401–410, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. E. S. White, S. R. B. Strom, N. L. Wys, and D. A. Arenberg, “Non-small cell lung cancer cells induce monocytes to increase expression of angiogenic activity,” Journal of Immunology, vol. 166, no. 12, pp. 7549–7555, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. H. Paz, N. Pathak, and J. Yang, “Invading one step at a time: the role of invadopodia in tumor metastasis,” Oncogene, vol. 33, no. 33, pp. 4193–4202, 2014. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Ricote, J. T. Huang, J. S. Welch, and C. K. Glass, “The peroxisome proliferator-activated receptor (PPARγ) as a regulator of monocyte/macrophage function,” Journal of Leukocyte Biology, vol. 66, no. 5, pp. 733–739, 1999. View at Google Scholar · View at Scopus
  54. M. Ricote, A. C. Li, T. M. Willson, C. J. Kelly, and C. K. Glass, “The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation,” Nature, vol. 391, no. 6662, pp. 79–82, 1998. View at Publisher · View at Google Scholar · View at Scopus
  55. C. Jiang, A. T. Ting, and B. Seed, “PPAR-γ agonists inhibit production of monocyte inflammatory cytokines,” Nature, vol. 391, no. 6662, pp. 82–86, 1998. View at Publisher · View at Google Scholar · View at Scopus
  56. J. A. Van Ginderachter, K. Movahedi, J. Van Den Bossche, and P. De Baetselier, “Macrophages, PPARs, and cancer,” PPAR Research, vol. 2008, Article ID 169414, 11 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. M. V. Schmidt, B. Brüne, and A. Von Knethen, “The nuclear hormone receptor PPARγ as a therapeutic target in major diseases,” TheScientificWorldJournal, vol. 10, pp. 2181–2197, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. H. A. Burgess, L. E. Daugherty, T. H. Thatcher et al., “PPARγ agonists inhibit TGF-β induced pulmonary myofibroblast differentiation and collagen production: implications for therapy of lung fibrosis,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 288, no. 6, pp. L1146–L1153, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. J. E. Milam, V. G. Keshamouni, S. H. Phan et al., “PPAR-γ agonists inhibit profibrotic phenotypes in human lung fibroblasts and bleomycin-induced pulmonary fibrosis,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 294, no. 5, pp. L891–L901, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Shimoda, K. T. Mellody, and A. Orimo, “Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression,” Seminars in Cell and Developmental Biology, vol. 21, no. 1, pp. 19–25, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Fang, J. Yuan, C. Peng, and Y. Li, “Collagen as a double-edged sword in tumor progression,” Tumor Biology, vol. 35, no. 4, pp. 2871–2882, 2014. View at Publisher · View at Google Scholar · View at Scopus
  62. T. J. Standiford, V. C. Keshamouni, and R. C. Reddy, “Peroxisome proliferator-activated receptor-γ as a regulator of lung inflammation and repair,” Proceedings of the American Thoracic Society, vol. 2, no. 3, pp. 226–231, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. A. T. Reddy, S. P. Lakshmi, J. M. Kleinhenz, R. L. Sutliff, C. M. Hart, and R. C. Reddy, “Endothelial cell peroxisome proliferator-activated receptor γ reduces endotoxemic pulmonary inflammation and injury,” The Journal of Immunology, vol. 189, no. 11, pp. 5411–5420, 2012. View at Publisher · View at Google Scholar · View at Scopus
  64. F. Ondrey, “Peroxisome proliferator-activated receptor γ pathway targeting in carcinogenesis: implications for chemoprevention,” Clinical Cancer Research, vol. 15, no. 1, pp. 2–8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. V. G. Keshamouni, R. C. Reddy, D. A. Arenberg et al., “Peroxisome proliferator-activated receptor-γ activation inhibits tumor progression in non-small-cell lung cancer,” Oncogene, vol. 23, no. 1, pp. 100–108, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Wick, G. Hurteau, C. Dessev et al., “Peroxisome proliferator-activated receptor-γ is a target of nonsteroidal anti-inflammatory drugs mediating cyclooxygenase-independent inhibition of lung cancer cell growth,” Molecular Pharmacology, vol. 62, no. 5, pp. 1207–1214, 2002. View at Publisher · View at Google Scholar · View at Scopus
  67. Y. Wang, M. James, W. Wen et al., “Chemopreventive effects of pioglitazone on chemically induced lung carcinogenesis in mice,” Molecular Cancer Therapeutics, vol. 9, no. 11, pp. 3074–3082, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. R. Govindarajan, L. Ratnasinghe, D. L. Simmons et al., “Thiazolidinediones and the risk of lung, prostate, and colon cancer in patients with diabetes,” Journal of Clinical Oncology, vol. 25, no. 12, pp. 1476–1481, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. G. D. Girnun, E. Naseri, S. B. Vafai et al., “Synergy between PPARγ ligands and platinum-based drugs in cancer,” Cancer Cell, vol. 11, no. 5, pp. 395–406, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. R. C. Reddy, A. Srirangam, K. Reddy et al., “Chemotherapeutic drugs induce PPAR-γ expression and show sequence-specific synergy with PPAR-γ ligands in inhibition of non-small cell lung cancer,” Neoplasia, vol. 10, no. 6, pp. 597–603, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Y. Lee, G. Y. Hur, K. H. Jung et al., “PPAR-γ agonist increase gefitinib's antitumor activity through PTEN expression,” Lung Cancer, vol. 51, no. 3, pp. 297–301, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. C.-J. Yao, G.-M. Lai, C.-F. Chan, A.-L. Cheng, Y.-Y. Yang, and S.-E. Chuang, “Dramatic synergistic anticancer effect of clinically achievable doses of lovastatin and troglitazone,” International Journal of Cancer, vol. 118, no. 3, pp. 773–779, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. K. Still, P. Grabowski, I. Mackie, M. Perry, and N. Bishop, “The peroxisome proliferator activator receptor alpha/delta agonists linoleic acid and bezafibrate upregulate osteoblast differentiation and induce periosteal bone formation in vivo,” Calcified Tissue International, vol. 83, no. 4, pp. 285–292, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. A. Tenenbaum, V. Boyko, E. Z. Fisman et al., “Does the lipid-lowering peroxisome proliferator-activated receptors ligand bezafibrate prevent colon cancer in patients with coronary artery disease?” Cardiovascular Diabetology, vol. 7, article 18, 2008. View at Publisher · View at Google Scholar · View at Scopus