Table of Contents Author Guidelines Submit a Manuscript
Pathology Research International
Volume 2011 (2011), Article ID 780652, 7 pages
http://dx.doi.org/10.4061/2011/780652
Review Article

Clinical Significance of MicroRNA Expression Profiles and Polymorphisms in Lung Cancer Development and Management

1Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324-00161 Rome, Italy
2Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 324-00161 Rome, Italy

Received 12 January 2011; Revised 1 June 2011; Accepted 7 June 2011

Academic Editor: P. J. Van Diest

Copyright © 2011 Francesca Megiorni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. C. Hoffman, A. M. Mauer, and E. E. Vokes, “Lung cancer,” Lancet, vol. 355, no. 9202, pp. 479–485, 2000. View at Google Scholar
  2. A. Jemal, R. Siegel, E. Ward, T. Murray, J. Xu, and M. J. Thun, “Cancer statistics, 2007,” CA: A Cancer Journal for Clinicians, vol. 57, no. 1, pp. 43–66, 2007. View at Publisher · View at Google Scholar
  3. R. Sangha, J. Price, and C. A. Butts, “Adjuvant therapy in non-small cell lung cancer: current and future directions,” Oncologist, vol. 15, no. 8, pp. 862–872, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. P. P. Massion and D. P. Carbone, “The molecular basis of lung cancer: molecular abnormalities and therapeutic implications,” Respiratory Research, vol. 41, no. 1, pp. 12–26, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. J. Clavel, “Progress in the epidemiological understanding of gene-environment interactions in major diseases: cancer,” Comptes Rendus Biologies, vol. 330, no. 4, pp. 306–317, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. D. P. Bartel, “MicroRNAs: genomics, biogenesis, mechanism, and function,” Cell, vol. 116, no. 2, pp. 281–297, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. M. A. Valencia-Sanchez, J. Liu, G. J. Hannon, and R. Parker, “Control of translation and mRNA degradation by miRNAs and siRNAs,” Genes and Development, vol. 20, no. 5, pp. 515–524, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. A. M. Denli, B. B. Tops, R. H. Plasterk, R. F. Ketting, and G. J. Hannon, “Processing of primary microRNAs by the Microprocessor complex,” Nature, vol. 432, no. 7014, pp. 231–235, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. V. N. Kim, “MicroRNA biogenesis: coordinated cropping and dicing,” Nature Reviews Molecular Cell Biology, vol. 6, no. 5, pp. 376–385, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. S. Griffiths-Jones, H. K. Saini, S. van Dongen, and A. J. Enright, “miRBase: tools for microRNA genomics,” Nucleic Acids Research, vol. 36, supplement 1, pp. D154–D158, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. M. Yoda, T. Kawamata, Z. Paroo et al., “ATP-dependent human RISC assembly pathways,” Nature Structural & Molecular Biology, vol. 17, no. 1, pp. 17–23, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. E. Berezikov, V. Guryev, J. van de Belt, E. Wienholds, R. H. A. Plasterk, and E. Cuppen, “Phylogenetic shadowing and computational identification of human microRNA genes,” Cell, vol. 120, no. 1, pp. 21–24, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. G. J. Weiss, L. T. Bemis, E. Nakajima et al., “EGFR regulation by microRNA in lung cancer: correlation with clinical response and survival to gefitinib and EGFR expression in cell lines,” Annals of Oncology, vol. 19, no. 6, pp. 1053–1059, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. A. G. Bader, D. Brown, and M. Winkler, “The promise of microRNA replacement therapy,” Cancer Research, vol. 70, no. 18, pp. 7027–7030, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. J. A. Bishop, H. Benjamin, H. Cholakh, A. Chajut, D. P. Clark, and W. H. Westra, “Accurate classification of non-small cell lung carcinoma using a novel microRNA-based approach,” Clinical Cancer Research, vol. 16, no. 2, pp. 610–619, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. R. Hummel, D. J. Hussey, and J. Haier, “MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumour types,” European Journal of Cancer, vol. 46, no. 2, pp. 298–311, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. P. J. Mishra and J. R. Bertino, “MicroRNA polymorphisms: the future of pharmacogenomics, molecular epidemiology and individualized medicine,” Pharmacogenomics, vol. 10, no. 3, pp. 399–416, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. B. Zhang, X. Pan, G. P. Cobb, and T. A. Anderson, “MicroRNAs as oncogenes and tumor suppressors,” Developmental Biology, vol. 302, no. 1, pp. 1–12, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. N. Yanaihara, N. Caplen, E. Bowman et al., “Unique microRNA molecular profiles in lung cancer diagnosis and prognosis,” Cancer Cell, vol. 9, no. 3, pp. 189–198, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. H. Osada and T. Takahashi, “let-7 and miR-17-92: small-sized major players in lung cancer development,” Cancer Science, vol. 102, no. 1, pp. 9–17, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. G. A. Calin, C. Sevignani, C. D. Dumitru et al., “Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 9, pp. 2999–3004, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. J. Takamizawa, H. Konishi, K. Yanagisawa et al., “Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival,” Cancer Research, vol. 64, no. 11, pp. 3753–3756, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. Y. S. Lee and A. Dutta, “The tumor suppressor microRNA let-7 represses the HMGA2 oncogene,” Genes and Development, vol. 21, no. 9, pp. 1025–1030, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. M. S. Kumar, S. J. Erkeland, R. E. Pester et al., “Suppression of non-small cell lung tumor development by the let-7 microRNA family,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 10, pp. 3903–3908, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. B. Liu, X. C. Peng, X. L. Zheng, J. Wang, and Y. W. Qin, “MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo,” Lung Cancer, vol. 66, no. 2, pp. 169–175, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. Z. Chen, H. Zeng, Y. Guo et al., “miRNA-145 inhibits non-small cell lung cancer cell proliferation by targeting c-Myc,” Journal of Experimental & Clinical Cancer Research, vol. 29, no. 1, pp. 151–160, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. W. Cho, A. Chow, and J. Au, “MiR-145 inhibits cell proliferation of human lung adenocarcinoma by targeting EGFR and NUDT1,” RNA Biology, vol. 8, no. 1, pp. 125–131, 2011. View at Publisher · View at Google Scholar
  28. R. Wang, Z. X. Wang, J. S. Yang, X. Pan, W. De, and L. B. Chen, “MicroRNA-451 functions as a tumor suppressor in human non-small cell lung cancer by targeting ras-related protein 14 (RAB14),” Oncogene, vol. 30, no. 23, pp. 2644–2658, 2011. View at Publisher · View at Google Scholar · View at PubMed
  29. Y. Hayashita, H. Osada, Y. Tatematsu et al., “A polycistronic MicroRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation,” Cancer Research, vol. 65, no. 21, pp. 9628–9632, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. Y. T. Chou, H. H. Lin, Y. C. Lien et al., “EGFR promotes lung tumorigenesis by activating miR-7 through a Ras/ERK/Myc pathway that targets the Ets2 transcriptional repressor ERF,” Cancer Research, vol. 70, no. 21, pp. 8822–8831, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. M. E. Hatley, D. M. Patrick, M. R. Garcia et al., “Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21,” Cancer Cell, vol. 18, no. 3, pp. 282–293, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. X. Liu, L. F. Sempere, H. Ouyang et al., “MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors,” Journal of Clinical Investigation, vol. 120, no. 4, pp. 1298–1309, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. J. Lu, G. Getz, E. A. Miska et al., “MicroRNA expression profiles classify human cancers,” Nature, vol. 435, no. 7043, pp. 834–838, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. M. T. Landi, Y. Zhao, M. Rotunno et al., “MicroRNA expression differentiates histology and predicts survival of lung cancer,” Clinical Cancer Research, vol. 16, no. 2, pp. 430–441, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. D. Lebanony, H. Benjamin, S. Gilad et al., “Diagnostic assay based on hsa-miR-205 expression distinguishes squamous from nonsquamous non-small-cell lung carcinoma,” Journal of Clinical Oncology, vol. 27, no. 12, pp. 2030–2037, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. A. R. Feinstein, N. A. Gelfman, R. Yesner et al., “Observer variability in the histopathologic diagnosis of lung cancer,” American Review of Respiratory Disease, vol. 101, no. 5, pp. 671–684, 1970. View at Google Scholar · View at Scopus
  37. J. B. Sorensen, F. R. Hirsch, A. Gazdar, and J. E. Olsen, “Interobserver variability in histopathologic subtyping and grading of pulmonary adenocarcinoma,” Cancer, vol. 71, no. 10, pp. 2971–2976, 1993. View at Google Scholar · View at Scopus
  38. S. L. Yu, H. Y. Chen, G. C. Chang et al., “MicroRNA signature predicts survival and relapse in lung cancer,” Cancer Cell, vol. 13, no. 1, pp. 48–57, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. W. Gao, Y. Yu, H. Cao et al., “Deregulated expression of miR-21, miR-143 and miR-181a in non small cell lung cancer is related to clinicopathologic characteristics or patient prognosis,” Biomedicine & Pharmacotherapy, vol. 64, no. 6, pp. 399–408, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. A. Navarro, T. Diaz, E. Gallardo et al., “Prognostic implications of miR-16 expression levels in resected non-small-cell lung cancer,” Journal of Surgical Oncology, vol. 103, no. 5, pp. 411–415, 2011. View at Publisher · View at Google Scholar
  41. L. Jiang, Q. Huang, S. Zhang et al., “Hsa-miR-125a-3p and hsa-miR-125a-5p are downregulated in non-small cell lung cancer and have inverse effects on invasion and migration of lung cancer cells,” BMC Cancer, vol. 10, pp. 318–330, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. M. Saito, A. J. Schetter, S. Mollerup et al., “The association of microRNA expression with prognosis and progression in early-stage, non-small cell lung adenocarcinoma: a retrospective analysis of three cohorts,” Clinical Cancer Research, vol. 17, no. 7, pp. 1875–1882, 2011. View at Publisher · View at Google Scholar · View at PubMed
  43. S. Arora, A. R. Ranade, N. L. Tran et al., “MicroRNA-328 is associated with (non-small) cell lung cancer (NSCLC) brain metastasis and mediates NSCLC migration,” International Journal of Cancer. In press. View at Publisher · View at Google Scholar · View at PubMed
  44. R. Hummel, D. J. Hussey, and J. Haier, “MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumour types,” European Journal of Cancer, vol. 46, no. 2, pp. 298–311, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. S. K. Patnaik, E. Kannisto, S. Knudsen, and S. Yendamuri, “Evaluation of microRNA expression profiles that may predict after surgical resection recurrence of localized stage i non-small cell lung cancer,” Cancer Research, vol. 70, no. 1, pp. 36–44, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. A. R. Ranade, D. Cherba, S. Sridhar et al., “MicroRNA 92a-2*: a biomarker predictive for chemoresistance and prognostic for survival in patients with small cell lung cancer,” Journal of Thoracic Oncology, vol. 5, no. 8, pp. 1273–1278, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. J. B. Weidhaas, I. Babar, S. M. Nallur et al., “MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy,” Cancer Research, vol. 67, no. 23, pp. 11111–11116, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. M. Boeri, C. Verri, D. Conte et al., “MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 9, pp. 3713–3718, 2011. View at Publisher · View at Google Scholar · View at PubMed
  49. Z. Hu, X. Chen, Y. Zhao et al., “Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 28, no. 10, pp. 1721–1726, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. J. Shen, N. W. Todd, H. Zhang et al., “Plasma microRNAs as potential biomarkers for non-small-cell lung cancer,” Laboratory Investigation, vol. 91, no. 4, pp. 579–587, 2011. View at Publisher · View at Google Scholar · View at PubMed
  51. W. Gao, L. Liu, X. Lu, and Y. Shu, “Circulating microRNAs: possible prediction biomarkers for personalized therapy of non-small-cell lung carcinoma,” Clinical Lung Cancer, vol. 12, no. 1, pp. 14–17, 2011. View at Publisher · View at Google Scholar · View at PubMed
  52. L. Yu, N. W. Todd, L. Xing et al., “Early detection of lung adenocarcinoma in sputum by a panel of microRNA markers,” International Journal of Cancer, vol. 127, no. 12, pp. 2870–2878, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. R. Duan, C. Pak, and P. Jin, “Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA,” Human Molecular Genetics, vol. 16, no. 9, pp. 1124–1131, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. Z. Yu, Z. Li, N. Jolicoeur et al., “Aberrant allele frequencies of the SNPs located in microRNA target sites are potentially associated with human cancers,” Nucleic Acids Research, vol. 35, no. 13, pp. 4535–4541, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. X. Pu, C. Lu, D. J. Stewart et al., “MicroRNA-related genetic variants as predictors of early stage non–small cell lung cancer clinical outcomes,” Cancer Epidemiology Biomarkers & Prevention, vol. 20, no. 4, p. 719, 2011. View at Google Scholar
  56. Z. Hu, J. Chen, T. Tian et al., “Genetic variants of miRNA sequences and non-small cell lung cancer survival,” Journal of Clinical Investigation, vol. 118, no. 7, pp. 2600–2608, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Wu, N. Jolicoeur, Z. Li et al., “Genetic variations of microRNAs in human cancer and their effects on the expression of miRNAs,” Carcinogenesis, vol. 29, no. 9, pp. 1710–1716, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. M. S. Nicoloso, H. Sun, R. Spizzo et al., “Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility,” Molecular and Cellular Pathobiology, vol. 70, no. 7, pp. 2789–2798, 2010. View at Publisher · View at Google Scholar · View at PubMed
  59. B. M. Ryan, A. I. Robles, and C. C. Harris, “Genetic variation in microRNA networks: the implications for cancer research,” Nature Reviews Cancer, vol. 10, no. 6, pp. 389–402, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. T. Tian, Y. Shu, J. Chen et al., “A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese,” Cancer Epidemiology Biomarkers & Prevention, vol. 18, no. 4, pp. 1183–1187, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. J. S. Kim, Y. Y. Choi, G. Jin et al., “Association of a common AGO1 variant with lung cancer risk: a two-stage case-control study,” Molecular Carcinogenesis, vol. 49, no. 10, pp. 913–921, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. L. J. Chin, E. Ratner, S. Leng et al., “A SNP in a let-7 microRNA complementary site in the KRAS 3'UTR increases non-small cell lung cancer risk,” Cancer Research, vol. 68, no. 20, pp. 8535–8540, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. M. Rotunno, Y. Zhao, A. W. Bergen et al., “Inherited polymorphisms in the RNA-mediated interference machinery affect microRNA expression and lung cancer survival,” British Journal of Cancer, vol. 103, no. 12, pp. 1870–1874, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. Z. Liu, A. Sall, and D. Yang, “MicroRNA: an emerging therapeutic target and intervention tool,” International Journal of Molecular Sciences, vol. 9, no. 6, pp. 978–999, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. C. Li, Y. Feng, G. Coukos, and L. Zhang, “Therapeutic microRNA strategies in human cancer,” The AAPS Journal, vol. 11, no. 4, pp. 747–757, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. J. Kota, R. R. Chivukula, K. A. O'Donnell et al., “Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model,” Cell, vol. 137, no. 6, pp. 1005–1017, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. O. A. Kent, R. R. Chivukula, M. Mullendore et al., “Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway,” Genes and Development, vol. 24, no. 24, pp. 2754–2759, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. A. Esquela-Kerscher, P. Trang, J. F. Wiggins et al., “The let-7 microRNA reduces tumor growth in mouse models of lung cancer,” Cell Cycle, vol. 7, no. 6, pp. 759–764, 2008. View at Google Scholar · View at Scopus
  69. P. Trang, P. P. Medina, J. F. Wiggins et al., “Regression of murine lung tumors by the let-7 microRNA,” Oncogene, vol. 29, no. 11, pp. 1580–1587, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. J. F. Wiggins, L. Ruffino, K. Kelnar et al., “Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34,” Cancer Research, vol. 70, no. 14, pp. 5923–5930, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. X. Pan, R. Thompson, X. Meng et al., “Tumor-targeted RNA-interference: functional non-viral nanovectors,” American Journal of Cancer Research, vol. 1, no. 1, pp. 25–42, 2011. View at Google Scholar
  72. P. Li, D. Liu, X. Sun, C. Liu, Y. Liu, and N. Zhang, “A novel cationic liposome formulation for efficient gene delivery via a pulmonary route,” Nanotechnology, vol. 22, no. 24, Article ID 245104, 2011. View at Publisher · View at Google Scholar · View at PubMed
  73. K. C. Vickers, B. T. Palmisano, B. M. Shoucri, R. D. Shamburek, and A. T. Remaley, “MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins,” Nature Cell Biology, vol. 13, no. 4, pp. 423–433, 2011. View at Publisher · View at Google Scholar · View at PubMed
  74. Y. Chen, X. Zhu, X. Zhang, B. Liu, and L. Huang, “Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy,” Molecular Therapy, vol. 18, no. 9, pp. 1650–1656, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. Y. Chen, S. R. Bathula, Q. Yang, and L. Huang, “Targeted nanoparticles deliver siRNA to melanoma,” Journal of Investigative Dermatology, vol. 12, no. 12, pp. 2790–2798, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. S. Davis, S. Propp, S. M. Freier et al., “Potent inhibition of microRNA in vivo without degradation,” Nucleic Acids Research, vol. 37, no. 1, pp. 70–77, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. H. Peacock, R. V. Fucini, P. Jayalath et al., “Nucleobase and ribose modifications control immunostimulation by a MicroRNA-122-mimetic RNA,” Journal of American Chemical Society, vol. 133, no. 24, pp. 9200–9203, 2011. View at Google Scholar
  78. J. C. Chuang and P. A. Jones, “Epigenetics and microRNAs,” Pediatric Research, vol. 61, no. 5, pp. 24R–29R, 2007. View at Publisher · View at Google Scholar · View at PubMed
  79. M. Fabbri, R. Garzon, A. Cimmino et al., “MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 40, pp. 15805–15810, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus