Table of Contents Author Guidelines Submit a Manuscript
Pathology Research International
Volume 2018, Article ID 9076723, 7 pages
https://doi.org/10.1155/2018/9076723
Research Article

Accelerated Blood Clearance (ABC) Phenomenon Favors the Accumulation of Tartar Emetic in Pegylated Liposomes in BALB/c Mice Liver

1Laboratório de Pesquisas Clínicas, CIPHARMA, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
2Laboratório de Nanotecnologia e Sistemas Nanoestruturados, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
3Laboratório de Tecnologia Farmacêutica, CCQFA, Universidade Federal de Pelotas, Capão do Leão, RS, Brazil
4Laboratório de Farmacologia, CIPHARMA, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
5Laboratório de Morfopatologia, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil

Correspondence should be addressed to Simone A. Rezende; rb.pofu.fe@ednezer

Received 26 June 2017; Revised 24 November 2017; Accepted 11 December 2017; Published 16 January 2018

Academic Editor: Shahid Pervez

Copyright © 2018 Tamara C. M. Lopes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. K. Haldar, P. Sen, and S. Roy, “Use of antimony in the treatment of leishmaniasis: current status and future directions,” Molecular Biology International, vol. 2011, Article ID 571242, 23 pages, 2011. View at Publisher · View at Google Scholar
  2. G. Vianna, “Comunicação à Sociedade Brasileira de Dermatologia,” Arquivo Brasileiro de Medicina, vol. 2, p. 426, 1912. View at Google Scholar
  3. G. Di Cristina and G. Caronia, “Sulla terapia della leishmaniosi interna,” Bulletin de La Société de Pathologie Éxotique et de sés Filiales, vol. 23, pp. 81-82, 1915. View at Google Scholar
  4. U. N. Brahmachari, “Chemotherapy of antimonial compounds in kala-azar infection. Part IV. Further observations on the therapeutic values of urea stibamine. By U.N. Brahmachari, 1922.,” The Indian Journal of Medical Research, vol. 89, pp. 393–404, 1989. View at Google Scholar · View at Scopus
  5. S. Rath, L. A. Trivelin, and T. R. Imbrunito, “Antimoniais empregados no tratamento da leishmaniose: estado da arte,” Química Nova, vol. 26, no. 4, pp. 550–555, 2003. View at Publisher · View at Google Scholar
  6. W. L. Roberts and P. M. Rainey, “Antileishmanial activity of sodium stibogluconate fractions,” Antimicrobial Agents and Chemotherapy, vol. 37, no. 9, pp. 1842–1846, 1993. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Sereno and J.-L. Lemesre, “Axenically cultured amastigote forms as an in vitro model for investigation of antileishmanial agents,” Antimicrobial Agents and Chemotherapy, vol. 41, no. 5, pp. 972–976, 1997. View at Google Scholar · View at Scopus
  8. http://www-cie.iarc.fr/htdocs/monographs/vol47/47-11.htm, acessada em Janeiro 2016.
  9. S. W. Felicetti, R. G. Thomas, and R. O. McClellan, “Retention of inhaled antimony-124 in the beagle dog as a function of temperature of aerosol formation,” Health Physics Journal, vol. 26, no. 6, pp. 525–531, 1974. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Sundar, J. Chakravarty, D. Agarwal, M. Rai, and H. W. Murray, “Single-dose liposomal amphotericin B for visceral leishmaniasis in India,” The New England Journal of Medicine, vol. 362, no. 6, pp. 504–512, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. C. D. V. Black, G. J. Watson, and R. J. Ward, “The use of pentostam liposomes in the chemotherapy of experimental leishmaniasis,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 71, no. 6, pp. 550–552, 1977. View at Publisher · View at Google Scholar · View at Scopus
  12. C. R. Alving, E. A. Steck, W. L. Chapman et al., “Therapy of leishmaniasis: Superior efficacies of liposome-encapsulated drugs,” Proceedings of the National Acadamy of Sciences of the United States of America, vol. 75, no. 6, pp. 2959–2963, 1978. View at Publisher · View at Google Scholar
  13. T. M. Allen and C. Hansen, “Pharmacokinetics of stealth versus conventional liposomes: effect of dose,” Biochimica et Biophysica Acta (BBA) - Biomembranes, vol. 1068, no. 2, pp. 133–141, 1991. View at Publisher · View at Google Scholar · View at Scopus
  14. V. P. Torchilin, “Recent advances with liposomes as pharmaceutical carriers,” Nature Reviews Drug Discovery, vol. 4, no. 2, pp. 145–160, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. E. T. M. Dams, P. Laverman, W. J. G. Oyen et al., “Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes,” The Journal of Pharmacology and Experimental Therapeutics, vol. 292, no. 3, pp. 1071–1079, 2000. View at Google Scholar · View at Scopus
  16. T. Ishida, K. Atobe, X. Wang, and H. Kiwada, “Accelerated blood clearance of PEGylated liposomes upon repeated injections: Effect of doxorubicin-encapsulation and high-dose first injection,” Journal of Controlled Release, vol. 115, no. 3, pp. 251–258, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. E. G. Azevedo, R. R. Ribeiro, S. M. Da Silva et al., “Mixed formulation of conventional and pegylated liposomes as a novel drug delivery strategy for improved treatment of visceral leishmaniasis,” Expert Opinion on Drug Delivery, vol. 11, no. 10, pp. 1–10, 2014. View at Publisher · View at Google Scholar · View at Scopus
  18. L. D. Mayer, M. J. Hope, P. R. Cullis, and A. S. Janoff, “Solute distributions and trapping efficiencies observed in freeze-thawed multilamellar vesicles,” BBA - Biomembranes, vol. 817, no. 1, pp. 193–196, 1985. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Nayar, M. J. Hope, and P. R. Cullis, “Generation of large unilamellar vesicles from long-chain saturated phosphatidylcholines by extrusion technique,” BBA - Biomembranes, vol. 986, no. 2, pp. 200–206, 1989. View at Publisher · View at Google Scholar · View at Scopus
  20. R. A. O. Castro, N. M. Silva-Barcellos, C. S. A. Licio et al., “Association of liposome-encapsulated trivalent antimonial with ascorbic acid: An effective and safe strategy in the treatment of experimental visceral leishmaniasis,” PLoS ONE, vol. 9, no. 8, Article ID e104055, 2014. View at Publisher · View at Google Scholar · View at Scopus
  21. S. E. Löfgren, L. C. Miletti, M. Steindel, E. Bachère, and M. A. Barracco, “Trypanocidal and leishmanicidal activities of different antimicrobial peptides (AMPs) isolated from aquatic animals,” Experimental Parasitology emphasizes, vol. 118, no. 2, pp. 197–202, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. D. G. Valadares, M. C. Duarte, J. S. Oliveira et al., “Leishmanicidal activity of the Agaricus blazei Murill in different Leishmania species,” Parasitology International, vol. 60, no. 4, pp. 357–363, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. A. S. Abu Lila, H. Kiwada, and T. Ishida, “The accelerated blood clearance (ABC) phenomenon: clinical challenge and approaches to manage,” Journal of Controlled Release, vol. 172, no. 1, pp. 38–47, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. D. A. Schettini, R. R. Ribeiro, C. Demicheli et al., “Improved targeting of antimony to the bone marrow of dogs using liposomes of reduced size,” International Journal of Pharmaceutics, vol. 315, no. 1-2, pp. 140–147, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. D. G. Hunter and B. J. Frisken, “Effect of extrusion pressure and lipid properties on the size and polydispersity of lipid vesicles,” Biophysical Journal, vol. 74, no. 6, pp. 2996–3002, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. A. L. De Melo, N. M. Silva-Barcellos, C. Demicheli, and F. Frézard, “Enhanced schistosomicidal efficacy of tartar emetic encapsulated in pegylated liposomes,” International Journal of Pharmaceutics, vol. 255, no. 1-2, pp. 227–230, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. N. R. Maciel, P. G. Reis, K. C. Kato et al., “Reduced cardiovascular alterations of tartar emetic administered in long-circulating liposomes in rats,” Toxicology Letters, vol. 199, no. 3, pp. 234–238, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. C. S. A. Lício, “Avaliação da Toxicidade Aguda do Antimônio Trivalente: formas livre ou liposomal associada ou não à administração de ácido ascórbico,” in Dissertação (Mestrado em Ciências Farmacêuticas) - Escola de Farmácia da Universidade Federal de Ouro Preto MG, 2013. View at Google Scholar
  29. F. Olson, C. A. Hunt, F. C. Szoka, W. J. Vail, and D. Papahadjopoulos, “Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes,” BBA—Biomembranes, vol. 557, no. 1, pp. 9–23, 1979. View at Publisher · View at Google Scholar · View at Scopus
  30. M. A. Dobrovolskaia, D. R. Germolec, and J. L. Weaver, “Evaluation of nanoparticle immunotoxicity,” Nature Nanotechnology, vol. 4, no. 7, pp. 411–414, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Thanabhorn, K. Jaijoy, S. Thamaree, K. Ingkaninan, and A. Panthong, “Acute and subacute toxicity study of the ethanol extract from Lonicera japonica Thunb.,” Journal of Ethnopharmacology, vol. 107, no. 3, pp. 370–373, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Dieter, “NTP technical report on the toxicity studies of Toxicity Studies of antimony potassium tartrate (CAS No. 28300-74-5) in F344/N Rats and B6C3F1 mice (Drinking Water and Intraperitoneal Injection Studies),” National Toxicology Program, 1992. View at Publisher · View at Google Scholar
  33. P. Hantson, S. Luyasu, V. Haufroid, and M. Lambert, “Antimony excretion in a patient with renal impairment during meglumine antimoniate therapy,” Pharmacotherapy, vol. 20, no. 9, pp. 1141–1143, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. M. Fuzailov, “Antimony metabolism in dogs with visceral leishmaniasis, treated with solusurmin,” Meditsinskaia Parazitologiia I Parazitarnye Bolezni, vol. 31, pp. 723–727, 1962. View at Google Scholar
  35. L. K. Chen and Y. K. Chang, “Antimony content of the blood and various organs following injection of tartar emetic into the intestinal lumen in rabbits,” Chung Hua IHsiieh Tsa Chih, vol. 44, pp. 448–50, 1958. View at Google Scholar
  36. K. L. Stemmer, “Pharmacology and toxicology of heavy metals: antimony,” Pharmacology and Therapeutics, Part A: Chemotherapy, Toxicology and, vol. 1, no. 2, pp. 157–160, 1976. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Collins, K. C. Carter, and A. J. Baillie, “Visceral leishmaniasis in the BALB/c mouse: Antimony tissue disposition and parasite suppression after the administration of free stibogluconate,” Annals of Tropical Medicine and Parasitology, vol. 86, no. 1, pp. 35–40, 1992. View at Publisher · View at Google Scholar · View at Scopus