Table of Contents Author Guidelines Submit a Manuscript
Pain Research and Management
Volume 2016, Article ID 5080438, 7 pages
http://dx.doi.org/10.1155/2016/5080438
Research Article

Potential Nociceptive Regulatory Effect of Probiotic Lactobacillus rhamnosus PB01 (DSM 14870) on Mechanical Sensitivity in Diet-Induced Obesity Model

1Biomedicine Group, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
2SMI®, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
3Department of Clinical Medicine, The Faculty of Medicine, Aalborg University Hospital, Aalborg, Denmark
4Bifodan A/S, Hundested, Denmark

Received 3 March 2016; Accepted 3 August 2016

Academic Editor: Anna Maria Aloisi

Copyright © 2016 Fereshteh Dardmeh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Shukla, R. Quirion, and W. Ma, “Reduced expression of pain mediators and pain sensitivity in amyloid precursor protein over-expressing CRND8 transgenic mice,” Neuroscience, vol. 250, pp. 92–101, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. P. A. Pizzo, N. M. Clark, and O. Carter Pokras, Relieving Pain in America: A Blueprint for Transforming Prevention, Care, Education, and Research, National Academies Press, Washington, DC, USA, 2011.
  3. R. G. Black, “The clinical management of chronic pain,” in Diagnosis and Treatment of Chronic Pain, N. Hendler, D. Long, and T. Wise, Eds., pp. 211–224, Wright-PSG, Littleton, Mass, USA, 1982. View at Google Scholar
  4. T. P. Hackett, “Pain and prejudice. Why do we doubt that the patient is in pain?” Medical Times, vol. 99, no. 2, pp. 130–134, 1971. View at Google Scholar
  5. T. E. Quill, “Patient-centered medicine: increasing patient responsibility,” Hospital Practice, vol. 20, 6, 9, 14 passim, 1985. View at Google Scholar
  6. R. R. Edwards, E. Sarlani, U. Wesselmann, and R. B. Fillingim, “Quantitative assessment of experimental pain perception: multiple domains of clinical relevance,” Pain, vol. 114, no. 3, pp. 315–319, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. L. S. Chesterton, J. Sim, C. C. Wright, and N. E. Foster, “Interrater reliability of algometry in measuring pressure pain thresholds in healthy humans, using multiple raters,” Clinical Journal of Pain, vol. 23, no. 9, pp. 760–766, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Walton, J. Macdermid, W. Nielson, R. Teasell, H. Reese, and L. Levesque, “Pressure pain threshold testing demonstrates predictive ability in people with acute whiplash,” Journal of Orthopaedic and Sports Physical Therapy, vol. 41, no. 9, pp. 658–665, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. S. P. Weisberg, D. McCann, M. Desai, M. Rosenbaum, R. L. Leibel, and A. W. Ferrante Jr., “Obesity is associated with macrophage accumulation in adipose tissue,” The Journal of Clinical Investigation, vol. 112, no. 12, pp. 1796–1808, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. J. J. Bonica, “Introduction,” in Considerations in Management of Acute Pain, J. J. Bonica, Ed., HP Publishing, New York, NY, USA, 1977. View at Google Scholar
  11. M. Daniel, C. Long, W. Murphy, R. Kores, and W. Hutcherson, “Therapists' and chronic pain patients' perceptions of treatment outcome,” The Journal of Nervous and Mental Disease, vol. 171, pp. 729–733, 1983. View at Google Scholar
  12. W. Peric-Knowlton, “The understanding and management of acute pain in adults: the nursing contribution,” International Journal of Nursing Studies, vol. 21, no. 2, pp. 131–143, 1984. View at Publisher · View at Google Scholar
  13. C. E. Stewart and D. MacMurdo, “Chronic pain,” in Pain Management in Emergency Medicine, P. M. Paris and R. D. Stewart, Eds., pp. 377–400, Appleton & Lange, 1988. View at Google Scholar
  14. A. G. Taylor, J. A. Skelton, and J. Butcher, “Duration of pain condition and physical pathology as determinants of nurses' assessments of patients in pain,” Nursing Research, vol. 33, no. 1, pp. 4–8, 1984. View at Google Scholar
  15. M. J. McKendall and R. J. Haier, “Pain sensitivity and obesity,” Psychiatry Research, vol. 8, no. 2, pp. 119–125, 1983. View at Publisher · View at Google Scholar
  16. D. S. Roane and J. R. Porter, “Nociception and opioid-induced analgesia in lean (Fa/−) and obese (fa/fa) Zucker rats,” Physiology and Behavior, vol. 38, no. 2, pp. 215–218, 1986. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Hatakka, J. Martio, M. Korpela et al., “Effects of probiotic therapy on the activity and activation of mild rheumatoid arthritis—a pilot study,” Scandinavian Journal of Rheumatology, vol. 32, no. 4, pp. 211–215, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Kalliomäki and E. Isolauri, “Pandemic of atopic diseases—a lack of microbial exposure in early infancy?” Current Drug Targets. Infectious Disorders, vol. 2, no. 3, pp. 193–199, 2002. View at Google Scholar
  19. M. Kalliomäki and E. Isolauri, “Role of intestinal flora in the development of allergy,” Current Opinion in Allergy and Clinical Immunology, vol. 3, no. 1, pp. 15–20, 2003. View at Publisher · View at Google Scholar
  20. J. Penders, C. Thijs, P. A. Van Den Brandt et al., “Gut microbiota composition and development of atopic manifestations in infancy: The KOALA Birth Cohort Study,” Gut, vol. 56, no. 5, pp. 661–667, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. C.-Y. Wang and J. K. Liao, “A mouse model of diet-induced obesity and insulin resistance,” in mTOR, vol. 821 of Methods in Molecular Biology, pp. 421–433, Springer, 2012. View at Publisher · View at Google Scholar
  22. S. Pendharkar, E. Brandsborg, L. Hammarström, H. Marcotte, and P.-G. Larsson, “Vaginal colonisation by probiotic lactobacilli and clinical outcome in women conventionally treated for bacterial vaginosis and yeast infection,” BMC Infectious Diseases, vol. 15, no. 1, article 255, 2015. View at Publisher · View at Google Scholar · View at Scopus
  23. C. C. Francisco, G. S. Howarth, and A. L. Whittaker, “Effects on animal wellbeing and sample quality of 2 techniques for collecting blood from the facial vein of mice,” Journal of the American Association for Laboratory Animal Science, vol. 54, pp. 76–80, 2015. View at Google Scholar
  24. M. Sanchez, C. Darimont, V. Drapeau et al., “Effect of Lactobacillus rhamnosus CGMCC1.3724 supplementation on weight loss and maintenance in obese men and women,” British Journal of Nutrition, vol. 111, no. 8, pp. 1507–1519, 2014. View at Publisher · View at Google Scholar · View at Scopus
  25. R. E. Ley, F. Bäckhed, P. Turnbaugh, C. A. Lozupone, R. D. Knight, and J. I. Gordon, “Obesity alters gut microbial ecology,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 31, pp. 11070–11075, 2005. View at Publisher · View at Google Scholar
  26. R. E. Ley, P. J. Turnbaugh, S. Klein, and J. I. Gordon, “Microbial ecology: human gut microbes associated with obesity,” Nature, vol. 444, no. 7122, pp. 1022–1023, 2006. View at Publisher · View at Google Scholar
  27. Y. Sanz, A. Santacruz, and P. Gauffin, “Gut microbiota in obesity and metabolic disorders,” Proceedings of the Nutrition Society, vol. 69, no. 3, pp. 434–441, 2010. View at Publisher · View at Google Scholar
  28. V. L. Hooper, M. H. Wong, A. Thelin, L. Hansson, P. G. Falk, and J. I. Gordon, “Molecular analysis of commensal host-microbial relationships in the intestine,” Science, vol. 291, no. 5505, pp. 881–884, 2001. View at Publisher · View at Google Scholar
  29. H.-Y. Lee, J.-H. Park, S.-H. Seok et al., “Human originated bacteria, Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice,” Biochimica et Biophysica Acta—Molecular and Cell Biology of Lipids, vol. 1761, no. 7, pp. 736–744, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Lee, K. Paek, H. Y. Lee, J. H. Park, and Y. Lee, “Antiobesity effect of trans-10, cis-12-conjugated linoleic acid-producing Lactobacillus plantarum PL62 on diet-induced obese mice,” Journal of Applied Microbiology, vol. 103, no. 4, pp. 1140–1146, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Kadooka, M. Sato, K. Imaizumi et al., “Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial,” European Journal of Clinical Nutrition, vol. 64, no. 6, pp. 636–643, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. N. Takemura, T. Okubo, and K. Sonoyama, “Lactobacillus plantarum strain No. 14 reduces adipocyte size in mice fed high-fat diet,” Experimental Biology and Medicine, vol. 235, no. 7, pp. 849–856, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Sousa, J. Halper, J. Zhang, S. J. Lewis, and W.-I. O. Li, “Effect of Lactobacillus acidophilus supernatants on body weight and leptin expression in rats,” BMC Complementary and Alternative Medicine, vol. 8, no. 1, article 5, 2008. View at Publisher · View at Google Scholar
  34. R. B. Terry, P. D. Wood, W. L. Haskell, M. L. Stefanick, and R. M. Krauss, “Regional adiposity patterns in relation to lipids, lipoprotein cholesterol, and lipoprotein subfraction mass in men,” Journal of Clinical Endocrinology and Metabolism, vol. 68, no. 1, pp. 191–199, 1989. View at Publisher · View at Google Scholar · View at Scopus
  35. L.-G. Ooi and M.-T. Liong, “Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo and in vitro findings,” International Journal of Molecular Sciences, vol. 11, no. 6, pp. 2499–2522, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Homayouni, L. Payahoo, and A. Azizi, “Effects of probiotics on lipid profile: a review,” American Journal of Food Technology, vol. 7, no. 5, pp. 251–265, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. I. A. Abd El-Gawad, E. M. El-Sayed, S. A. Hafez, H. M. El-Zeini, and F. A. Saleh, “The hypocholesterolaemic effect of milk yoghurt and soy-yoghurt containing bifidobacteria in rats fed on a cholesterol-enriched diet,” International Dairy Journal, vol. 15, no. 1, pp. 37–44, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Cusi, “The role of adipose tissue and lipotoxicity in the pathogenesis of type 2 diabetes,” Current Diabetes Reports, vol. 10, no. 4, pp. 306–315, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Fazeli, J. Moshtaghian, M. Mirlohi, and M. Shirzadi, “Reduction in serum lipid parameters by incorporation of a native strain of Lactobacillus plantarum A7 in mice,” Iranian Journal of Diabetes and Lipid Disorders, vol. 9, pp. 1–7, 2010. View at Google Scholar · View at Scopus
  40. M. Fukushima, A. Yamada, T. Endo, and M. Nakano, “Effects of a mixture of organisms, Lactobacillus acidophilus or Streptococcus faecalis on δ6-desaturase activity in the livers of rats fed a fat- and cholesterol-enriched diet,” Nutrition, vol. 15, no. 5, pp. 373–378, 1999. View at Publisher · View at Google Scholar · View at Scopus
  41. M. T. Liong and N. P. Shah, “Effects of a Lactobacillus casei synbiotic on serum lipoprotein, intestinal microflora, and organic acids in rats,” Journal of Dairy Science, vol. 89, no. 5, pp. 1390–1399, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. R. H. Nguyen, A. J. Wilcox, R. Skjaerven, and D. D. Baird, “Men's body mass index and infertility,” Human Reproduction, vol. 22, no. 9, pp. 2488–2493, 2007. View at Publisher · View at Google Scholar
  43. T. D. T. Nguyen, J. H. Kang, and M. S. Lee, “Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowering effects,” International Journal of Food Microbiology, vol. 113, no. 3, pp. 358–361, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. H. Park, J. G. Kim, Y. W. Shin, S. H. Kim, and K. Y. Whang, “Effect of dietary inclusion of Lactobacillus acidophilus ATCC 43121 on cholesterol metabolism in rats,” Journal of Microbiology and Biotechnology, vol. 17, no. 4, pp. 655–662, 2007. View at Google Scholar
  45. E. Fabian and I. Elmadfa, “Influence of daily consumption of probiotic and conventional yoghurt on the plasma lipid profile in young healthy women,” Annals of Nutrition and Metabolism, vol. 50, no. 4, pp. 387–393, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Hlivak, J. Odraska, M. Ferencik, L. Ebringer, E. Jahnova, and Z. Mikes, “One-year application of probiotic strain Enterococcus faecium M-74 decreases serum cholesterol levels,” Bratislavské Lekárske Listy, vol. 106, no. 2, pp. 67–72, 2005. View at Google Scholar · View at Scopus
  47. J. Z. Xiao, S. Kondo, N. Takahashi et al., “Effects of milk products fermented by Bifidobacterium longum on blood lipids in rats and healthy adult male volunteers,” Journal of Dairy Science, vol. 86, no. 7, pp. 2452–2461, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. S. J. Lewis and S. Burmeister, “A double-blind placebo-controlled study of the effects of Lactobacillus acidophilus on plasma lipids,” European Journal of Clinical Nutrition, vol. 59, no. 6, pp. 776–780, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. R. Pawan and A. Bhatia, “Systemic immunomodulation and hypocholesteraemia by dietary probiotics: a clinical study,” Journal of Clinical and Diagnostic Research, vol. 4, pp. 312–324, 2007. View at Google Scholar
  50. N. M. de Roos, G. Schouten, and M. B. Katan, “Yoghurt enriched with Lactobacillus acidophilus does not lower blood lipids in healthy men and women with normal to borderline high serum cholesterol levels,” European Journal of Clinical Nutrition, vol. 53, no. 4, pp. 277–280, 1999. View at Publisher · View at Google Scholar · View at Scopus
  51. L. A. Simons, S. G. Amansec, and P. Conway, “Effect of Lactobacillus fermentum on serum lipids in subjects with elevated serum cholesterol,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 16, no. 8, pp. 531–535, 2006. View at Publisher · View at Google Scholar
  52. A. Pradalier, J. C. Willer, F. Boureau, and J. Dry, “Relationship between pain and obesity: an electrophysiological study,” Physiology & Behavior, vol. 27, no. 6, pp. 961–964, 1981. View at Publisher · View at Google Scholar
  53. H.-X. Zhuang, L. Wuarin, Z.-J. Fei, and D. N. Ishii, “Insulin-like growth factor (IGF) gene expression is reduced in neural tissues and liver from rats with non-insulin-dependent diabetes mellitus, and IGF treatment ameliorates diabetic neuropathy,” Journal of Pharmacology and Experimental Therapeutics, vol. 283, no. 1, pp. 366–374, 1997. View at Google Scholar · View at Scopus
  54. T. Iannitti, A. Graham, and S. Dolan, “Increased central and peripheral inflammation and inflammatory hyperalgesia in Zucker rat model of leptin receptor deficiency and genetic obesity,” Experimental Physiology, vol. 97, no. 11, pp. 1236–1245, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Okifuji and B. D. Hare, “The association between chronic pain and obesity,” Journal of Pain Research, vol. 8, pp. 399–408, 2015. View at Publisher · View at Google Scholar · View at Scopus
  56. V. Loria Kohen, C. Gómez Candela, C. Fernández Fernández et al., “Hormonal an inflammatory biomarkers in a group of overweight and obese women,” Nutricion Hospitalaria, vol. 26, no. 4, pp. 884–889, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. P. D. Cani, N. M. Delzenne, J. Amar, and R. Burcelin, “Role of gut microflora in the development of obesity and insulin resistance following high-fat diet feeding,” Pathologie Biologie, vol. 56, no. 5, pp. 305–309, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Guilherme, J. V. Virbasius, V. Puri, and M. P. Czech, “Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes,” Nature Reviews Molecular Cell Biology, vol. 9, no. 5, pp. 367–377, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. M. de Goeij, L. T. van Eijk, P. Vanelderen et al., “Systemic inflammation decreases pain threshold in humans in vivo,” PLoS ONE, vol. 8, no. 12, Article ID e84159, 2013. View at Publisher · View at Google Scholar · View at Scopus
  60. I. Ramzan, B. K. Wong, and G. B. Corcoran, “Pain sensitivity in dietary-induced obese rats,” Physiology & Behavior, vol. 54, no. 3, pp. 433–435, 1993. View at Google Scholar
  61. E. Isolauri, Y. Sütas, P. Kankaanpää, H. Arvilommi, and S. Salminen, “Probiotics: effects on immunity,” The American Journal of Clinical Nutrition, vol. 73, supplement 2, pp. 444S–450S, 2001. View at Google Scholar
  62. R.-A. Kekkonen, N. Lummela, H. Karjalainen et al., “Probiotic intervention has strain-specific anti-inflammatory effects in healthy adults,” World Journal of Gastroenterology, vol. 14, no. 13, pp. 2029–2036, 2008. View at Google Scholar
  63. E. Isolauri, “Probiotics in human disease,” The American Journal of Clinical Nutrition, vol. 73, no. 6, pp. 11425–11465, 2001. View at Google Scholar
  64. T. Yokokura, “Antitumour and immunostimulating activity of Lactobacillus casei,” Japanese Dairy Food Science, vol. 43, pp. A141–A150, 1994. View at Google Scholar