Table of Contents Author Guidelines Submit a Manuscript
Psyche
Volume 2012, Article ID 149572, 14 pages
http://dx.doi.org/10.1155/2012/149572
Review Article

Mechanisms of Odor Coding in Coniferous Bark Beetles: From Neuron to Behavior and Application

Department of Biology, Lund University, 223 62 Lund, Sweden

Received 3 October 2011; Accepted 12 December 2011

Academic Editor: John A. Byers

Copyright © 2012 Martin N. Andersson. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. A. Kurz, C. C. Dymond, G. Stinson et al., “Mountain pine beetle and forest carbon feedback to climate change,” Nature, vol. 452, no. 7190, pp. 987–990, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. L. Stauffer, F. Lakatos, and G. M. Hewitt, “Phylogeography and postglacial colonization routes of Ips typographus L. (Coleoptera, Scolytidae),” Molecular Ecology, vol. 8, no. 5, pp. 763–773, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. J. A. Byers, “Chemical ecology of bark beetles in a complex olfactory landscape,” in Bark and Wood Boring Insects in Living Trees in Europe, a Synthesis, F. Lieutier, K. R. Day, A. Battisti, J.-C. Grégoire, and H. F. Evans, Eds., pp. 89–134, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2004. View at Google Scholar
  4. B. Økland and O. N. Bjørnstad, “Synchrony and geographical variation of the spruce bark beetle (Ips typographus) during a non-epidemic period,” Population Ecology, vol. 45, no. 3, pp. 213–219, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Økland and O. N. Bjørnstad, “A resource-depletion model of forest insect outbreaks,” Ecology, vol. 87, no. 2, pp. 283–290, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Schlyter and G. A. Birgersson, “Forest beetles,” in Pheromones of Non-Lepidopteran Insects Associated with Agricultural Plants, J. Hardie and A. K. Minks, Eds., pp. 113–148, CAB International, Oxford, UK, 1999. View at Google Scholar
  7. Q.-H. Zhang and F. Schlyter, “Olfactory recognition and behavioural avoidance of angiosperm nonhost volatiles by conifer-inhabiting bark beetles,” Agricultural and Forest Entomology, vol. 6, no. 1, pp. 1–19, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. M. N. Andersson, M. C. Larsson, M. Blaženec, R. Jakuš, Q.-H. Zhang, and F. Schlyter, “Peripheral modulation of pheromone response by inhibitory host compound in a beetle,” Journal of Experimental Biology, vol. 213, no. 19, pp. 3332–3339, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. N. Erbilgin, P. Krokene, T. Kvamme, and E. Christiansen, “A host monoterpene influences Ips typographus (Coleoptera: Curculionidae, Scolytinae) responses to its aggregation pheromone,” Agricultural and Forest Entomology, vol. 9, no. 2, pp. 135–140, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. J. A. Byers and Q.-H. Zhang, “Chemical ecology of bark beetles in regard to search and selection of host trees,” in Recent Advances in Entomological Research, T.-X. Liu and L. Kang, Eds., pp. 91–113, Higher Education Press, Beijing, China, 2010. View at Google Scholar
  11. N. J. Vickers, “Mechanisms of animal navigation in odor plumes,” Biological Bulletin, vol. 198, no. 2, pp. 203–212, 2000. View at Google Scholar · View at Scopus
  12. R. T. Cardé and M. A. Willis, “Navigational strategies used by insects to find distant, wind-borne sources of odor,” Journal of Chemical Ecology, vol. 34, no. 7, pp. 854–866, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. J. Murlis, M. A. Willis, and R.T. Cardé, “Spatial and temporal structures of pheromone plumes in fields and forests,” Physiological Entomology, vol. 25, pp. 211–222, 2000. View at Google Scholar
  14. L. Abuin, B. Bargeton, M. H. Ulbrich, E. Y. Isacoff, S. Kellenberger, and R. Benton, “Functional architecture of olfactory ionotropic glutamate receptors,” Neuron, vol. 69, no. 1, pp. 44–60, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. L. B. Vosshall and R. F. Stocker, “Molecular architecture of smell and taste in Drosophila,” Annual Review of Neuroscience, vol. 30, pp. 505–533, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. M. de Bruyne and T. C. Baker, “Odor detection in insects: volatile codes,” Journal of Chemical Ecology, vol. 34, no. 7, pp. 882–897, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. L. B. Vosshall and B. S. Hansson, “A unified nomenclature system for the insect olfactory coreceptor,” Chemical Senses, vol. 36, no. 6, pp. 497–498, 2011. View at Publisher · View at Google Scholar · View at PubMed
  18. E. A. Hallem and J. R. Carlson, “Coding of odors by a receptor repertoire,” Cell, vol. 125, no. 1, pp. 143–160, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. M. N. Andersson, M. C. Larsson, and F. Schlyter, “Specificity and redundancy in the olfactory system of the bark beetle Ips typographus: single-cell responses to ecologically relevant odors,” Journal of Insect Physiology, vol. 55, no. 6, pp. 556–567, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. F. Schlyter, G. Birgersson, J. A. Byers, J. Löfqvist, and G. Bergström, “Field response of spruce bark beetle, Ips typographus, to aggregation pheromone candidates,” Journal of Chemical Ecology, vol. 13, no. 4, pp. 701–716, 1987. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Saint-Germain, C. M. Buddle, and P. Drapeau, “Primary attraction and random landing in host-selection by wood-feeding insects: a matter of scale?” Agricultural and Forest Entomology, vol. 9, no. 3, pp. 227–235, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. J. A. Byers, “An encounter rate model of bark beetle populations searching at random for susceptible host trees,” Ecological Modelling, vol. 91, no. 1-3, pp. 57–66, 1996. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Schlyter, G. Birgersson, and A. Leufvén, “Inhibition of attraction to aggregation pheromone by verbenone and ipsenol - Density regulation mechanisms in bark beetle Ips typographus,” Journal of Chemical Ecology, vol. 15, no. 8, pp. 2263–2277, 1989. View at Publisher · View at Google Scholar · View at Scopus
  24. Q.-H. Zhang, F. Schlyter, and P. Anderson, “Green leaf volatiles interrupt pheromone response of spruce bark beetle, Ips typographus,” Journal of Chemical Ecology, vol. 25, no. 12, pp. 2847–2861, 1999. View at Google Scholar · View at Scopus
  25. Q.-H. Zhang, F. Schlyter, and G. Birgersson, “Bark volatiles from nonhost angiosperm trees of spruce bark beetle, Ips typographus (L.) (Coleoptera: Scolytidae): chemical and electrophysiological analysis,” Chemoecology, vol. 10, no. 2, pp. 69–80, 2000. View at Google Scholar · View at Scopus
  26. Q.-H. Zhang, T. Tolasch, F. Schlyter, and W. Francke, “Enantiospecific antennal response of bark beetles to spiroacetal (E)-conophthorin,” Journal of Chemical Ecology, vol. 28, no. 9, pp. 1839–1852, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. Q.-H. Zhang and F. Schlyter, “Redundancy, synergism, and active inhibitory range of non-host volatiles in reducing pheromone attraction in European spruce bark beetle Ips typographus,” Oikos, vol. 101, no. 2, pp. 299–310, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Å. Tømmerås, “Specialization of the olfactory receptor cells in the bark beetle Ips typographus and its predator Thanasimus formicarius to bark beetle pheromones and host tree volatiles,” Journal of Comparative Physiology A, vol. 157, no. 3, pp. 335–341, 1985. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Mustaparta, B. Å. Tømmerås, P. Baeckström, J. M. Bakke, and G. Ohloff, “Ipsdienol-specific receptor cells in bark beetles: structure-activity relationships of various analogues and of deuterium-labelled ipsdienol,” Journal of Comparative Physiology A, vol. 154, no. 4, pp. 591–595, 1984. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Å. Tømmerås and H. Mustaparta, “Chemoreception of host volatiles in the bark beetle Ips typographus,” Journal of Comparative Physiology A, vol. 161, no. 5, pp. 705–710, 1987. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Å. Tømmerås, H. Mustaparta, and J. C. Gregoire, “Receptor cells in Ips typographus and Dendroctonus micans specific to pheromones of the reciprocal genus,” Journal of Chemical Ecology, vol. 10, no. 5, pp. 759–770, 1984. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Mustaparta, M. E. Angst, and G. N. Lanier, “Specialization of olfactory cells to insect-and host-produced volatiles in the bark beetle Ips pini (say),” Journal of Chemical Ecology, vol. 5, no. 1, pp. 109–123, 1979. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Mustaparta, M. E. Angst, and G. N. Lanier, “Receptor discrimination of enantiomers of the aggregation pheromone ipsdienol, in two species of Ips,” Journal of Chemical Ecology, vol. 6, no. 3, pp. 689–701, 1980. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Mustaparta, M. E. Angst, and G. N. Lanier, “Responses of single receptor cells in the pine engraver beetle, Ips pini (SAY) (Coleoptera: Scolytidae) to its aggregation pheromone, ipsdienol, and the aggregation inhibitor, ipsenol,” Journal of Comparative Physiology. A, vol. 121, no. 3, pp. 343–347, 1977. View at Publisher · View at Google Scholar · View at Scopus
  35. J. C. Dickens, T. L. Payne, L. C. Ryker, and J. A. Rudinsky, “Single cell responses of the Douglas-fir beetle, Dendroctonus pseudotsugae hopkins (Coleoptera: Scolytidae), to pheromones and host odors,” Journal of Chemical Ecology, vol. 10, no. 4, pp. 583–600, 1984. View at Publisher · View at Google Scholar · View at Scopus
  36. J. C. Dickens, T. L. Payne, L. C. Ryker, and J. A. Rudinsky, “Multiple acceptors for pheromonal enantiomers on single olfactory cells in the Douglas-fir beetle, Dendroctonus pseudotsugae Hopk. (Coleoptera: Scolytidae),” Journal of Chemical Ecology, vol. 11, no. 10, pp. 1359–1370, 1985. View at Publisher · View at Google Scholar · View at Scopus
  37. T. L. Payne, J. V. Richerson, J. C. Dickens et al., “Southern pine beetle: olfactory receptor and behavior discrimination of enantiomers of the attractant pheromone frontalin,” Journal of Chemical Ecology, vol. 8, no. 5, pp. 873–881, 1982. View at Publisher · View at Google Scholar · View at Scopus
  38. J. C. Dickens and T. L. Payne, “Bark beetle olfaction: pheromone receptor system in Dendroctonus frontalis,” Journal of Insect Physiology, vol. 23, no. 4, pp. 481–489, 1977. View at Google Scholar · View at Scopus
  39. B. Å. Tømmerås and H. Mustaparta, “Single cell responses to pheromones, host and non-host volatiles in the ambrosia beetle Trypodendron lineatum,” Entomologia Experimentalis et Applicata, vol. 52, no. 2, pp. 141–148, 1989. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Guerrero, J. Feixas, J. Pajares, L. J. Wadhams, J. A. Pickett, and C. M. Woodcock, “Semiochemically induced inhibition of behaviour of Tomicus destruens (Woll.) (Coleoptera: Scolytidae),” Naturwissenschaften, vol. 84, no. 4, pp. 155–157, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. E. Hallberg, “Sensory organs in Ips typographus (Insecta: Coleoptera)—Fine structure of antennal sensilla,” Protoplasma, vol. 111, no. 3, pp. 206–214, 1982. View at Publisher · View at Google Scholar · View at Scopus
  42. T. C. Baker, S. A. Ochieng, A. A. Cossé et al., “A comparison of responses from olfactory receptor neurons of Heliothis subflexa and Heliothis virescens to components of their sex pheromone,” Journal of Comparative Physiology A, vol. 190, no. 2, pp. 155–165, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. H. Ljungberg, P. Anderson, and B. S. Hansson, “Physiology and morphology of pheromone-specific sensilla on the antennae of male and female Spodoptera littoralis (Lepidoptera: Noctuidae),” Journal of Insect Physiology, vol. 39, no. 3, pp. 253–260, 1993. View at Google Scholar · View at Scopus
  44. G. Birgersson, F. Schlyter, J. Löfqvist, and G. Bergström, “Quantitative variation of pheromone components in the spruce bark beetle Ips typographus from different attack phases,” Journal of Chemical Ecology, vol. 10, no. 7, pp. 1029–1055, 1984. View at Publisher · View at Google Scholar · View at Scopus
  45. M. N. Andersson and F. Schlyter, “What reaches the antenna? How to calibrate odor flux and ligand-receptor affinities,” Chemical Senses. In press. View at Publisher · View at Google Scholar · View at PubMed
  46. I. M. Wilson, J. H. Borden, R. Gries, and G. Gries, “Green leaf volatiles as antiaggregants for the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae),” Journal of Chemical Ecology, vol. 22, no. 10, pp. 1861–1875, 1996. View at Google Scholar · View at Scopus
  47. Q.-H. Zhang, N. Erbilgin, and S. J. Seybold, “GC-EAD responses to semiochemicals by eight beetles in the subcortical community associated with Monterey pine trees in coastal California: similarities and disparities across three trophic levels,” Chemoecology, vol. 18, no. 4, pp. 243–254, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. D. P. W. Huber, R. Gries, J. H. Borden, and H. D. Pierce, “A survey of antennal responses by five species of coniferophagous bark beetles (Coleoptera: Scolytidae) to bark volatiles of six species of angiosperm trees,” Chemoecology, vol. 10, no. 3, pp. 103–113, 2000. View at Google Scholar · View at Scopus
  49. J. A. Byers, “Avoidance of competition by spruce bark beetles, Ips typographus and Pityogenes chalcographus,” Experientia, vol. 49, no. 3, pp. 272–275, 1993. View at Google Scholar · View at Scopus
  50. B. S. Hansson, M. C. Larsson, and W. S. Leal, “Green leaf volatile-detecting olfactory receptor neurones display very high sensitivity and specificity in a scarab beetle,” Physiological Entomology, vol. 24, no. 2, pp. 121–126, 1999. View at Publisher · View at Google Scholar · View at Scopus
  51. M. C. Larsson, W. S. Leal, and B. S. Hansson, “Olfactory receptor neurons detecting plant odours and male volatiles in Anomala cuprea beetles (Coleoptera: Scarabaeidae),” Journal of Insect Physiology, vol. 47, no. 9, pp. 1065–1076, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. H. Y. Fadamiro, A. A. Cossé, and T. C. Baker, “Fine-scale resolution of closely spaced pheromone and antagonist filaments by flying male Helicoverpa zea,” Journal of Comparative Physiology, A, vol. 185, no. 2, pp. 131–141, 1999. View at Publisher · View at Google Scholar · View at Scopus
  53. T. J. A. Bruce, L. J. Wadhams, and C. M. Woodcock, “Insect host location: a volatile situation,” Trends in Plant Science, vol. 10, no. 6, pp. 269–274, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. A. Vermeulen and J. P. Rospars, “Why are insect olfactory receptor neurons grouped into sensilla? The teachings of a model investigating the effects of the electrical interaction between neurons on the transepithelial potential and the neuronal transmembrane potential,” European Biophysics Journal, vol. 33, no. 7, pp. 633–643, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. A. F. Silbering, R. Okada, K. Ito, and C. G. Galizia, “Olfactory information processing in the Drosophila antennal lobe: anything goes?” Journal of Neuroscience, vol. 28, no. 49, pp. 13075–13087, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. M. M. Blight, J. A. Pickett, L. J. Wadhams, and C. M. Woodcock, “Antennal perception of oilseed rape, Brassica napus (Brassicaceae), volatiles by the cabbage seed weevil Ceutorhynchus assimilis (Coleoptera, Curculionidae),” Journal of Chemical Ecology, vol. 21, no. 11, pp. 1649–1664, 1995. View at Google Scholar · View at Scopus
  57. E. A. Hallem, M. G. Ho, and J. R. Carlson, “The molecular basis of odor coding in the Drosophila antenna,” Cell, vol. 117, no. 7, pp. 965–979, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. J. E. Cometto-Muñiz, W. S. Cain, and M. H. Abraham, “Quantification of chemical vapors in chemosensory research,” Chemical Senses, vol. 28, no. 6, pp. 467–477, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. T. Tsukatani, T. Miwa, M. Furukawa, and R. M. Costanzo, “Detection thresholds for phenyl ethyl alcohol using serial dilutions in different solvents,” Chemical Senses, vol. 28, no. 1, pp. 25–32, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. R. S. Vetter, A. E. Sage, K. A. Justus, R. T. Cardé, and C. G. Galizia, “Temporal integrity of an airborne odor stimulus is greatly affected by physical aspects of the odor delivery system,” Chemical Senses, vol. 31, no. 4, pp. 359–369, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. M. N. Andersson, Olfaction in the spruce bark beetle, Ips typographus: receptor, neuron and habitat, Ph.D. dissertation, Swedish University of Agricultural Sciences, Alnarp, Sweden, 2011.
  62. R. De Jong and J. H. Visser, “Integration of olfactory information in the Colorado potato beetle brain,” Brain Research, vol. 447, no. 1, pp. 10–17, 1988. View at Google Scholar · View at Scopus
  63. K. Hansen, “Discrimination and production of disparlure enantiomers by the gypsy moth and the nun moth,” Physiological Entomology, vol. 9, pp. 9–18, 1984. View at Google Scholar
  64. G. P. Svensson and M. C. Larsson, “Enantiomeric specificity in a pheromone-kairomone system of two threatened saproxylic beetles, Osmoderma eremita and Elater ferrugineus,” Journal of Chemical Ecology, vol. 34, no. 2, pp. 189–197, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. H. Wojtasek, B. S. Hansson, and W. S. Leal, “Attracted or repelled? A matter of two neurons, one pheromone binding protein, and a chiral center,” Biochemical and Biophysical Research Communications, vol. 250, no. 2, pp. 217–222, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. W. M. Getz and R. P. Akers, “Honeybee olfactory sensilla behave as integrated processing units,” Behavioral and Neural Biology, vol. 61, no. 2, pp. 191–195, 1994. View at Google Scholar · View at Scopus
  67. H. Jactel and E. G. Brockerhoff, “Tree diversity reduces herbivory by forest insects,” Ecology Letters, vol. 10, no. 9, pp. 835–848, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. H. Jactel, G. Birgersson, S. Andersson, and F. Schlyter, “Non-host volatiles mediate associational resistance to the pine processionary moth,” Oecologia, vol. 166, no. 3, pp. 703–711, 2011. View at Publisher · View at Google Scholar · View at PubMed
  69. M. N. Andersson, M. Binyameen, M. M. Sadek, and F. Schlyter, “Attraction modulated by spacing of pheromone components and anti-attractants in a bark beetle and a moth,” Journal of Chemical Ecology, vol. 37, no. 8, pp. 899–911, 2011. View at Publisher · View at Google Scholar · View at PubMed
  70. N. E. Gillette, J. D. Stein, D. R. Owen et al., “Verbenone-releasing flakes protect individual Pinus contorta trees from attack by Dendroctonus ponderosae and Dendroctonus valens (Coleoptera: Curculionidae, Scolytinae),” Agricultural and Forest Entomology, vol. 8, no. 3, pp. 243–251, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. J. A. Byers, “Interactions of pheromone component odor plumes of western pine beetle,” Journal of Chemical Ecology, vol. 13, no. 12, pp. 2143–2157, 1987. View at Publisher · View at Google Scholar · View at Scopus
  72. B. T. Sullivan and K. Mori, “Spatial displacement of release point can enhance activity of an attractant pheromone synergist of a bark beetle,” Journal of Chemical Ecology, vol. 35, no. 10, pp. 1222–1233, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. G. H. L. Rothschild, “Problems in defining synergists and inhibitors of the Oriental Fruit Moth pheromone by field experimentation,” Entomologia Experimentalis et Applicata, vol. 17, no. 2, pp. 294–302, 1974. View at Publisher · View at Google Scholar · View at Scopus
  74. P. Witzgall and E. Priesner, “Wind-tunnel study on attraction inhibitor in male Coleophora laricella Hbn. (Lepidoptera: Coleophoridae),” Journal of Chemical Ecology, vol. 17, no. 7, pp. 1355–1362, 1991. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Coracini, M. Bengtsson, L. Cichon, and P. Witzgall, “Codling moth males do not discriminate between pheromone and a pheromone/antagonist blend during upwind flight,” Naturwissenschaften, vol. 90, no. 9, pp. 419–423, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. T. A. Christensen and J. G. Hildebrand, “Coincident stimulation with pheromone components improves temporal pattern resolution in central olfactory neurons,” Journal of Neurophysiology, vol. 77, no. 2, pp. 775–781, 1997. View at Google Scholar · View at Scopus
  77. R. Jakuš, F. Schlyter, Q.-H. Zhang et al., “Overview of development of an anti-attractant based technology for spruce protection against Ips typographus: from past failures to future success,” Journal of Pest Science, vol. 76, no. 4, pp. 89–99, 2003. View at Publisher · View at Google Scholar · View at Scopus
  78. C. Schiebe, M. Blaženec, R. Jakuš, C. R. Unelius, and F. Schlyter, “Semiochemical diversity diverts bark beetle attacks from Norway spruce edges,” Journal of Applied Entomology, vol. 135, no. 10, pp. 726–737, 2011. View at Publisher · View at Google Scholar
  79. M. N. Andersson, J. M. Bengtsson, E. Grosse-Wilde et al., “Olfactory receptors in Ips typographus. Transcriptome from antenna analysed and preliminary compared to Dendroctonus ponderosae and Tribolium castaneum (Coleoptera: Curculionidae & Tenebrionidae),” in Genetics of Bark Beetles and Associated Microorganisms, F. Lakatos, B. Mészáros, and C. Stauffer, Eds., p. 15, Sopron, Hungary, 2011. View at Google Scholar
  80. N. Triballeau, E. van Name, G. Laslier et al., “High-potency olfactory receptor agonists discovered by virtual high-throughput screening: molecular probes for receptor structure and olfactory function,” Neuron, vol. 60, no. 5, pp. 767–774, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. J. N. C. van der Pers and A. K. Minks, “Pheromone monitoring in the field using single sensillum recording,” Entomologia Experimentalis et Applicata, vol. 68, no. 3, pp. 237–245, 1993. View at Publisher · View at Google Scholar · View at Scopus