Table of Contents Author Guidelines Submit a Manuscript
Volume 2012, Article ID 414508, 7 pages
Research Article

2-methyl-3-buten-2-ol: A Pheromone Component of Conifer Bark Beetles Found in the Bark of Nonhost Deciduous Trees

1Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 102, 230 53 Alnarp, Sweden
2R&D Department, Sterling International, Inc., 3808 N. Sullivan Road Building 16, Spokane, WA 99216, USA

Received 30 December 2011; Accepted 9 February 2012

Academic Editor: John A. Byers

Copyright © 2012 Qing-He Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Volatiles from bark of aspen, Populus tremula L. and two species of birch: silver birch (Betula pendula Roth.) and common birch (B. pubescens Ehrh.), were collected by direct solvent extraction and aeration of both newly cut bark chips and undamaged stems in June 1998 and subjected to GC-MS analysis. The results showed the presence of 2-methyl-3-buten-2-ol (MB), one of the two principal aggregation pheromone components of the spruce bark beetle, Ips typographus, in bark extraction samples of all the three deciduous tree species tested. In addition, one more oxygenated hemiterpene, 3-methyl-3-buten-2-one, and (E)-3-penten-2-ol were also found in the bark extracts. Only trace amounts of MB were detected in some aeration samples of the fresh bark chips, and no MB was found from the aeration samples of undamaged stems at detectable levels. The occurrence of this compound was also confirmed in the bark of four exotic birch species: B. albosinensis Schneid., B. ermanii Cham., B. jacquemontii Spach, and B. maximowicziana Regel, but not yet in the European pines/spruces and the common yeasts. Our results raise major questions regarding the evolution, the tropospheric chemistry, and the ecological role of this hemiterpene alcohol. They also suggest that comparative studies on the biosynthetic pathways for MB in different sources would be of considerably evolutionary interest.