Table of Contents Author Guidelines Submit a Manuscript
Psyche
Volume 2012 (2012), Article ID 470436, 16 pages
http://dx.doi.org/10.1155/2012/470436
Review Article

An Insight into the Sialomes of Bloodsucking Heteroptera

Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA

Received 27 January 2012; Accepted 17 April 2012

Academic Editor: Mark M. Feldlaufer

Copyright © 2012 José M. C. Ribeiro et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Grimaldi and M. Engel, Evolution of the Insects, Cambridge University Press, New York, NY, USA, 2005.
  2. J. M. C. Ribeiro, M. Schneider, and J. A. Guimaraes, “Purification and characterization of prolixin S (nitrophorin 2), the salivary anticoagulant of the blood-sucking bug Rhodnius prolixus,” Biochemical Journal, vol. 308, no. 1, pp. 243–249, 1995. View at Google Scholar · View at Scopus
  3. I. M. B. Francischetti, J. F. Andersen, and J. M. C. Ribeiro, “Biochemical and functional characterization of recombinant Rhodnius prolixus platelet aggregation inhibitor 1 as a novel lipocalin with high affinity for adenosine diphosphate and other adenine nucleotides,” Biochemistry, vol. 41, no. 11, pp. 3810–3818, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. I. M. B. Francischetti, J. M. C. Ribeiro, D. Champagne, and J. Andersen, “Purification, cloning, expression, and mechanism of action of a novel platelet aggregation inhibitor from the salivary gland of the blood-sucking bug, Rhodnius prolixus,” The Journal of Biological Chemistry, vol. 275, no. 17, pp. 12639–12650, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. J. F. Andersen and W. R. Montfort, “The crystal structure of nitrophorin 2. A trifunctional antihemostatic protein from the saliva of Rhodnius prolixus,” The Journal of Biological Chemistry, vol. 275, no. 39, pp. 30496–30503, 2000. View at Google Scholar · View at Scopus
  6. J. M. C. Ribeiro and F. A. Walker, “High affinity histamine-binding and antihistaminic activity of the salivary nitric oxide-carrying heme protein (nitrophorin) of Rhodnius prolixus,” Journal of Experimental Medicine, vol. 180, no. 6, pp. 2251–2257, 1994. View at Publisher · View at Google Scholar · View at Scopus
  7. J. F. Andersen, I. M. B. Francischetti, J. G. Valenzuela, P. Schuck, and J. M. C. Ribeiro, “Inhibition of hemostasis by a high affinity biogenic amine-binding protein from the saliva of a blood-feeding insect,” The Journal of Biological Chemistry, vol. 278, no. 7, pp. 4611–4617, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. J. F. Andersen and J. M. C. Ribeiro, “A secreted salivary inositol polyphosphate 5-phosphatase from a blood-feeding insect: allosteric activation by soluble phosphoinositides and phosphatidylserine,” Biochemistry, vol. 45, no. 17, pp. 5450–5457, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. D. M. Golodne, R. Q. Monteiro, A. V. Graça-Souza, M. A. C. Silva-Neto, and G. C. Atella, “Lysophosphatidylcholine acts as an anti-hemostatic molecule in the saliva of the blood-sucking bug Rhodnius prolixus,” The Journal of Biological Chemistry, vol. 278, no. 30, pp. 27766–27771, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. J. M. C Ribeiro, J. M. H Hazzard, R. H. Nussenzveig, D. E. Champagne, F. A. Walker et al., “Reversible binding of nitric oxide by a salivary nitrosylhemeprotein from the blood sucking bug, Rhodnius prolixus,” Science, vol. 260, Article ID 5107, pp. 539–541, 1993. View at Publisher · View at Google Scholar
  11. D. E. Champagne, R. H. Nussenzveig, and J. M. C. Ribeiro, “Purification, partial characterization, and cloning of nitric oxide-carrying heme proteins (nitrophorins) from salivary glands of the blood- sucking insect Rhodnius prolixus,” The Journal of Biological Chemistry, vol. 270, no. 15, pp. 8691–8695, 1995. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Faudry, S. P. Lozzi, J. M. Santana et al., “Triatoma infestans apyrases belong to the 5′-nucleotidase family,” The Journal of Biological Chemistry, vol. 279, no. 19, pp. 19607–19613, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Faudry, J. M. Santana, C. Ebel, T. Vernet, and A. R. L. Teixeira, “Salivary apyrases of Triatoma infestans are assembled into homo-oligomers,” Biochemical Journal, vol. 396, no. 3, pp. 509–515, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Morita, H. Isawa, Y. Orito, S. Iwanaga, Y. Chinzei, and M. Yuda, “Identification and characterization of a collagen-induced platelet aggregation inhibitor, triplatin, from salivary glands of the assassin bug, Triatoma infestans,” FEBS Journal, vol. 273, no. 13, pp. 2955–2962, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Ma, T. C. F. Assumpcao, Y. Li, J. F. Andersen, J. Ribeiro, I. M. B. Francischetti et al., “Triplatin, a platelet aggregation inhibitor from the salivary gland of the triatomine vector of chagas disease, binds to TXA2 but does notinteract with GPVI,” Thrombosis and Haemostasis, vol. 1, no. 107, pp. 111–123, 2011. View at Publisher · View at Google Scholar
  16. H. Isawa, Y. Orito, N. Jingushi et al., “Identification and characterization of plasma kallikrein-kinin system inhibitors from salivary glands of the blood-sucking insect Triatoma infestans,” FEBS Journal, vol. 274, no. 16, pp. 4271–4286, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. R. M. Martins, M. L. Sforça, R. Amino et al., “Lytic activity and structural differences of amphipathic peptides derived from trialysin,” Biochemistry, vol. 45, no. 6, pp. 1765–1774, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Amino, R. M. Martins, J. Procopio, I. Y. Hirata, M. A. Juliano, and S. Schenkman, “Trialysin, a novel pore-forming protein from saliva of hematophagous insects activated by limited proteolysis,” The Journal of Biological Chemistry, vol. 277, no. 8, pp. 6207–6213, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Noeske-Jungblut, J. Krätzschmar, B. Haendler et al., “An inhibitor of collagen-induced platelet aggregation from the saliva of Triatoma pallidipennis,” The Journal of Biological Chemistry, vol. 269, no. 7, pp. 5050–5053, 1994. View at Google Scholar · View at Scopus
  20. B. Haendler, A. Becker, C. Noeske-Jungblut, J. Kratzschmar, P. Donner, and W. D. Schleuning, “Expression of active recombinant pallidipin, a novel platelet aggregation inhibitor, in the periplasm of Escherichia coli,” Biochemical Journal, vol. 307, no. 2, pp. 465–470, 1995. View at Google Scholar · View at Scopus
  21. C. Noeske-Jungblut, B. Haendler, P. Donner, A. Alagon, L. Possani, and W. D. Schleuning, “Triabin, a highly potent exosite inhibitor of thrombin,” The Journal of Biological Chemistry, vol. 270, no. 48, pp. 28629–28634, 1995. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Glusa, E. Bretschneider, J. Daum, and C. Noeske-Jungblut, “Inhibition of thrombin-mediated cellular effects by triabin, a highly potent anion-binding exosite thrombin inhibitor,” Thrombosis and Haemostasis, vol. 77, no. 6, pp. 1196–1200, 1997. View at Google Scholar · View at Scopus
  23. P. Fuentes-Prior, C. Noeske-Jungblut, P. Donner, W. D. Schleuning, R. Huber, and W. Bode, “Structure of the thrombin complex with triabin, a lipocalin-like exosite-binding inhibitor derived from a triatomine bug,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 22, pp. 11845–11850, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. C. D. Paddock, J. H. McKerrow, E. Hansell, K. W. Foreman, I. Hsieh, and N. Marshall, “Identification, cloning, and recombinant expression of procalin, a major triatomine allergen,” Journal of Immunology, vol. 167, no. 5, pp. 2694–2699, 2001. View at Google Scholar · View at Scopus
  25. T. C. F. Assumpção, P. H. Alvarenga, J. M. C. Ribeiro, J. F. Andersen, and I. M. B. Francischetti, “Dipetalodipin, a novel multifunctional salivary lipocalin that inhibits platelet aggregation, vasoconstriction, and angiogenesis through unique binding specificity: TXA2, PGF2α, and 15(S)-HETE,” The Journal of Biological Chemistry, vol. 285, no. 50, pp. 39001–39012, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. J. G. Valenzuela, R. Charlab, M. Y. Galperin, and J. M. C. Ribeiro, “Purification, cloning, and expression of an apyrase from the bed bug Cimex lectularius: a new type of nucleotide-binding enzyme,” The Journal of Biological Chemistry, vol. 273, no. 46, pp. 30583–30590, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. J. G. Valenzuela, F. A. Walker, and J. M. Ribeiro, “A salivary nitrophorin (nitric-oxide-carrying hemoprotein) in the bedbug Cimex lectularius,” Journal of Experimental Biology, vol. 198, pp. 1519–1526, 1995. View at Google Scholar · View at Scopus
  28. J. G. Valenzuela and J. M. C. Ribeiro, “Purification and cloning of the salivary nitrophorin from the hemipteran Cimex lectularius,” Journal of Experimental Biology, vol. 201, no. 18, pp. 2659–2664, 1998. View at Google Scholar · View at Scopus
  29. A. Weichsel, E. M. Maes, J. F. Andersen et al., “Heme-assisted S-nitrosation of a proximal thiolate in a nitric oxide transport protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 3, pp. 594–599, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. C. K. Meiser, H. Piechura, H. E. Meyer, B. Warscheid, G. A. Schaub, and C. Balczun, “A salivary serine protease of the haematophagous reduviid Panstrongylus megistus: sequence characterization, expression pattern and characterization of proteolytic activity,” Insect Molecular Biology, vol. 19, no. 3, pp. 409–421, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. W. G. Friend and J. J. B. Smith, “Feeding in Rhodnius prolixus: mouthpart activity and salivation, and their correlation with changes of electrical resistance,” Journal of Insect Physiology, vol. 17, no. 2, pp. 233–243, 1971. View at Google Scholar · View at Scopus
  32. A. C. Soares, J. Carvalho-Tavares, N. D. F. Gontijo, V. C. dos Santos, M. M. Teixeira, and M. H. Pereira, “Salivation pattern of Rhodnius prolixus (Reduviidae; Triatominae) in mouse skin,” Journal of Insect Physiology, vol. 52, no. 5, pp. 468–472, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. M. M. Lavoipierre, G. Dickerson, and R. M. Gordon, “Studies on the methods of feeding of blood-sucking arthropods. I. The manner in which triatomine bugs obtain their blood-meal, as observed in the tissues of the living rodent, with some remarks on the effects of the bite on human volunteers,” Annals of Tropical Medicine and Parasitology, vol. 53, pp. 235–250, 1959. View at Google Scholar · View at Scopus
  34. S. Dinant, J. L. Bonnemain, C. Girousse, and J. Kehr, “Phloem sap intricacy and interplay with aphid feeding,” Comptes Rendus, vol. 333, no. 6-7, pp. 504–515, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. J. M. C. Ribeiro et al., “Insect saliva: function, biochemistry and physiology,” in Regulatory Mechanisms of Insect Feeding, R. F. Chapman and G. de Boer, Eds., pp. 74–97, Chapman & Hall, London, 1995. View at Google Scholar
  36. J. M. C. Ribeiro, J. Andersen, M. A. C. Silva-Neto, V. M. Pham, M. K. Garfield, and J. G. Valenzuela, “Exploring the sialome of the blood-sucking bug Rhodnius prolixus,” Insect Biochemistry and Molecular Biology, vol. 34, no. 1, pp. 61–79, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. A. C. M. Bussacos, E. S. Nakayasu, M. M. Hecht et al., “Diversity of anti-haemostatic proteins in the salivary glands of Rhodnius species transmitters of Chagas disease in the greater Amazon,” Journal of Proteomics, vol. 74, no. 9, pp. 1664–1672, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. T. C. F. Assumpção, I. M. B. Francischetti, J. F. Andersen, A. Schwarz, J. M. Santana, and J. M. C. Ribeiro, “An insight into the sialome of the blood-sucking bug Triatoma infestans, a vector of Chagas' disease,” Insect Biochemistry and Molecular Biology, vol. 38, no. 2, pp. 213–232, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Santos, J. M. C. Ribeiro, M. J. Lehane et al., “The sialotranscriptome of the blood-sucking bug Triatoma brasiliensis (Hemiptera, Triatominae),” Insect Biochemistry and Molecular Biology, vol. 37, no. 7, pp. 702–712, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. T. C. Assumpção, D. P. Eaton, V. M. Pham et al., “An insight into the sialotranscriptome of Triatoma matogrossensis, a kissing bug associated with fogo selvagem in South America,” American Journal of Tropical Medicine and Hygiene, vol. 86, no. 6, pp. 1005–1014, 2012. View at Google Scholar
  41. J. M. Ribeiro, T. C. Assumpção, V. M. Pham, I. M. Francischetti, C. E. Reisenman et al., “An insight into the sialotranscriptome of Triatoma rubida (Hemiptera: Heteroptera),” Journal of Medical Entomology, vol. 49, no. 3, pp. 563–572, 2012. View at Google Scholar
  42. H. Kato, R. C. Jochim, E. A. Gomez et al., “A repertoire of the dominant transcripts from the salivary glands of the blood-sucking bug, Triatoma dimidiata, a vector of Chagas disease,” Infection, Genetics and Evolution, vol. 10, no. 2, pp. 184–191, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. T. C. F. Assumpção, S. Charneau, P. B. M. Santiago et al., “Insight into the salivary transcriptome and proteome of Dipetalogaster maxima,” Journal of Proteome Research, vol. 10, no. 2, pp. 669–679, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. A. C. M. Bussacos, E. S. Nakayasu, M. M. Hecht et al., “Redundancy of proteins in the salivary glands of Panstrongylus megistus secures prolonged procurement for blood meals,” Journal of Proteomics, vol. 74, no. 9, pp. 1693–1700, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. I. M. B. Francischetti, E. Calvo, J. F. Andersen et al., “Insight into the sialome of the bed bug, Cimex lectularius,” Journal of Proteome Research, vol. 9, no. 8, pp. 3820–3831, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. I. M. B. Francischetti, A. H. Lopes, F. A. Dias, V. M. Pham, and J. M. C. Ribeiro, “An insight into the sialotranscriptome of the seed-feeding bug, oncopeltus fasciatus,” Insect Biochemistry and Molecular Biology, vol. 37, no. 9, pp. 903–910, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. R. H. Cobben et al., “On the original feeding habits of the hemiptera (Insecta): a reply to Merrill Sweet,” Annals of the Entomological Society of America, vol. 72, no. 6, pp. 711–715, 1979. View at Google Scholar
  48. V. Hypša, D. F. Tietz, J. Zrzavý, R. O. M. Rego, C. Galvao, and J. Jurberg, “Phylogeny and biogeography of triatominae (Hemiptera: Reduviidae): molecular evidence of a New world origin of the asiatic clade,” Molecular Phylogenetics and Evolution, vol. 23, no. 3, pp. 447–457, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. C. J. Schofield and C. Galvão, “Classification, evolution, and species groups within the triatominae,” Acta Tropica, vol. 110, no. 2-3, pp. 88–100, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. J. G. Valenzuela, O. M. Chuffe, and J. M. C. Ribeiro, “Apyrase and anti-platelet activities from the salivary glands of the bed bug Cimex lectularius,” Insect Biochemistry and Molecular Biology, vol. 26, no. 6, pp. 557–562, 1996. View at Publisher · View at Google Scholar · View at Scopus
  51. E. Faudry, P. S. Rocha, T. Vernet, S. P. Lozzi, and A. R. L. Teixeira, “Kinetics of expression of the salivary apyrases in Triatoma infestans,” Insect Biochemistry and Molecular Biology, vol. 34, no. 10, pp. 1051–1058, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. W. R. Montfort, A. Weichsel, and J. F. Andersen, “Nitrophorins and related antihemostatic lipocalins from Rhodnius prolixus and other blood-sucking arthropods,” Biochimica et Biophysica Acta, vol. 1482, no. 1-2, pp. 110–118, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. J. F. Andersen, D. E. Champagne, A. Weichsel et al., “Nitric oxide binding and crystallization of recombinant nitrophorin I, a nitric oxide transport protein from the blood-sucking bug Rhodnius prolixus,” Biochemistry, vol. 36, no. 15, pp. 4423–4428, 1997. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Weichsel, J. F. Andersen, D. E. Champagne, F. A. Walker, and W. R. Montfort, “Crystal structures of a nitric oxide transport protein from a blood-sucking insect,” Nature Structural Biology, vol. 5, no. 4, pp. 304–309, 1998. View at Google Scholar · View at Scopus
  55. J. F. Andersen, A. Weichsel, C. A. Balfour, D. E. Champagne, and W. R. Montfort, “The crystal structure of nitrophorin 4 at 1.5 Å resolution: transport of nitric oxide by a lipocalin-based heme protein,” Structure, vol. 6, no. 10, pp. 1315–1327, 1998. View at Google Scholar · View at Scopus
  56. I. M. B. Francischetti, A. Sá-Nunes, B. J. Mans, I. M. Santos, and J. M. C. Ribeiro, “The role of saliva in tick feeding,” Frontiers in Bioscience, vol. 14, no. 6, pp. 2051–2088, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. I. M. B. Francischetti, “Platelet aggregation inhibitors from hematophagous animals,” Toxicon, vol. 56, no. 7, pp. 1130–1144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. J. W. Cornwall and W. S. Patton, “Some observations on the salivary secretion of the common blood-sucking insects and ticks,” Indian Journal of Medical Research, vol. 2, pp. 569–593, 1914. View at Google Scholar
  59. J. M. C. Ribeiro and E. S. Garcia, “Platelet antiaggregating activity in the salivary secretion of the blood sucking bug Rhodnius prolixus,” Experientia, vol. 37, no. 4, pp. 384–386, 1981. View at Google Scholar · View at Scopus
  60. M. J. Mant and K. R. Parker, “Two platelet aggregation inhibitors in tsetse (Glossina) saliva with studies of roles of thrombine and citrate in in vitro platelet aggregation,” British Journal of Haematology, vol. 48, no. 4, pp. 601–608, 1981. View at Google Scholar · View at Scopus
  61. J. M. C. Ribeiro, A. Vachereau, G. B. Modi, and R. B. Tesh, “A novel vasodilatory peptide from the salivary glands of the sand fly Lutzomyia longipalpis,” Science, vol. 243, no. 4888, pp. 212–214, 1989. View at Google Scholar · View at Scopus
  62. K. Hellmann and R. I. Hawkins, “Prolixin-S and Prolixin-G; two anticoagulants from Rhodnius prolixus Stål,” Nature, vol. 207, no. 4994, pp. 265–267, 1965. View at Publisher · View at Google Scholar · View at Scopus
  63. J. J. B. Smith, R. A. Cornish, and J. Wilkes, “Properties of a calcium-dependent apyrase in the saliva of the blood-feeding bug, Rhodnius prolixus,” Experientia, vol. 36, no. 8, pp. 898–900, 1980. View at Google Scholar · View at Scopus
  64. J. M. C. Ribeiro, R. Gonzales, and O. Marinotti, “A salivary vasodilator in the blood-sucking bug, Rhodnius prolixus,” British Journal of Pharmacology, vol. 101, no. 4, pp. 932–936, 1990. View at Google Scholar · View at Scopus
  65. R. R. Cavalcante, M. H. Pereira, and N. F. Gontijo, “Anti-complement activity in the saliva of phlebotomine sand flies and other haematophagous insects,” Parasitology, vol. 127, no. 1, pp. 87–93, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. J. M. C. Ribeiro, “The antiserotonin and antihistamine activities of salivary secretion of Rhodnius prolixus,” Journal of Insect Physiology, vol. 28, no. 1, pp. 69–75, 1982. View at Google Scholar · View at Scopus
  67. J. M. C. Ribeiro and J. J. F. Sarkis, “Anti-thromboxane activity in Rhodnius prolixus salivary secretion,” Journal of Insect Physiology, vol. 28, no. 8, pp. 655–660, 1982. View at Google Scholar · View at Scopus
  68. Á. Dan, M. H. Pereira, J. L. Pesquero, L. Diotaiuti, and P. S. Lacerda Beirão, “Action of the saliva of Triatoma infestans (Heteroptera: Reduviidae) on sodium channels,” Journal of Medical Entomology, vol. 36, no. 6, pp. 875–879, 1999. View at Google Scholar · View at Scopus
  69. S. F. Altschul, T. L. Madden, A. A. Schäffer et al., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic Acids Research, vol. 25, no. 17, pp. 3389–3402, 1997. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Ashburner, C. A. Ball, J. A. Blake et al., “Gene ontology: tool for the unification of biology,” Nature Genetics, vol. 25, no. 1, pp. 25–29, 2000. View at Publisher · View at Google Scholar · View at Scopus
  71. D. L. Wheeler, T. Barrett, D. A. Benson et al., “Database resources of the National Center for Biotechnology Information,” Nucleic Acids Research, vol. 33, pp. D39–D45, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. A. Marchler-Bauer, A. R. Panchenko, B. A. Shoemarker, P. A. Thiessen, L. Y. Geer, and S. H. Bryant, “CDD: a database of conserved domain alignments with links to domain three-dimensional structure,” Nucleic Acids Research, vol. 30, no. 1, pp. 281–283, 2002. View at Google Scholar · View at Scopus
  73. H. Nielsen, S. Brunak, and G. von Heijne, “Machine learning approaches for the prediction of signal peptides and other protein sorting signals,” Protein Engineering, vol. 12, no. 1, pp. 3–9, 1999. View at Google Scholar · View at Scopus
  74. E. L. Sonnhammer, G. von Heijne, and A. Krogh, “A hidden Markov model for predicting transmembrane helices in protein sequences,” Proceedings International Conference on Intelligent Systems for Molecular Biology, vol. 6, pp. 175–182, 1998. View at Google Scholar · View at Scopus
  75. J. E. Hansen, O. Lund, N. Tolstrup, A. A. Gooley, K. L. Williams, and S. Brunak, “NetOglyc: prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility,” Glycoconjugate Journal, vol. 15, no. 2, pp. 115–130, 1998. View at Publisher · View at Google Scholar · View at Scopus
  76. “Heteroptera: true bugs,” http://tolweb.org/Heteroptera/10805/2009.02.27.
  77. H. M. Kalckar, “Adenylpyrophosphatase and myokinase,” The Journal of Biological Chemistry, vol. 153, pp. 355–373, 1945. View at Google Scholar
  78. O. Meyerhoff et al., “The origin of the reaction of Harden and Young in cell-free alcoholic fermentation,” The Journal of Biological Chemistry, vol. 157, pp. 105–119, 1945. View at Google Scholar
  79. P. S. Krishnam, “Studies on apyrase. II: some properties of potato apyrase,” Archives of Biochemistry, vol. 20, no. 2, pp. 272–283, 1949. View at Google Scholar · View at Scopus
  80. K. H. Lee, J. Z. Ksezanoski, J. J. Eiler et al., “Mode of action of potato apyrase,” Proceedings of the Society for Experimental Biology and Medicine, vol. 1, no. 94, pp. 193–195, 1957. View at Google Scholar
  81. X. D. Gao, V. Kaigorodov, and Y. Jigami, “YND1, a homologue of GDA1, encodes membrane-bound apyrase required for Golgi N- and O-glycosylation in Saccharomyces cerevisiae,” The Journal of Biological Chemistry, vol. 274, no. 30, pp. 21450–21456, 1999. View at Publisher · View at Google Scholar · View at Scopus
  82. C. D'Alessio, E. S. Trombetta, and A. J. Parodi, “Nucleoside diphosphatase and glycosyltransferase activities can localize to different subcellular compartments in Schizosaccharomyces pombe,” The Journal of Biological Chemistry, vol. 278, no. 25, pp. 22379–22387, 2003. View at Publisher · View at Google Scholar · View at Scopus
  83. J. J. Sarkis, J. A. Guimarães, and J. M. Ribeiro, “Salivary apyrase of Rhodnius prolixus. Kinetics and purification,” Biochemical Journal, vol. 233, no. 3, pp. 885–891, 1986. View at Google Scholar · View at Scopus
  84. J. M. C. Ribeiro and E. S. Garcia, “The salivary and crop apyrase activity of Rhodnius prolixus,” Journal of Insect Physiology, vol. 26, no. 5, pp. 303–307, 1980. View at Google Scholar · View at Scopus
  85. J. M. C. Ribeiro, J. J. F. Sarkis, P. A. Rossignol, and A. Spielman, “Salivary apyrase of Aedes aegypti: characterization and secretory fate,” Comparative Biochemistry and Physiology B, vol. 79, no. 1, pp. 81–86, 1984. View at Google Scholar · View at Scopus
  86. J. M. C. Ribeiro, P. A. Rossignol, and A. Spielman, “Salivary gland apyrase determines probing time in anopheline mosquitoes,” Journal of Insect Physiology, vol. 31, no. 9, pp. 689–692, 1985. View at Publisher · View at Google Scholar · View at Scopus
  87. D. E. Champagne, C. T. Smartt, J. M. C. Ribeiro, and A. A. James, “The salivary gland-specific apyrase of the mosquito Aedes aegypti is a member of the 5'-nucleotidase family,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 3, pp. 694–698, 1995. View at Publisher · View at Google Scholar · View at Scopus
  88. J. Schulte Am Esch, J. Sévigny, E. Kaczmarek et al., “Structural elements and limited proteolysis of CD39 influence ATP diphosphohydrolase activity,” Biochemistry, vol. 38, no. 8, pp. 2248–2258, 1999. View at Publisher · View at Google Scholar · View at Scopus
  89. K. T. Tan, S. P. Watson, and G. Y. H. Lip, “The endothelium and platelets in cardiovascular disease: potential targets for therapeutic intervention,” Current Medicinal Chemistry, vol. 2, no. 2, pp. 169–178, 2004. View at Publisher · View at Google Scholar · View at Scopus
  90. A. J. Marcus, M. J. Broekman, J. H. F. Drosopoulos et al., “Role of CD39 (NTPDase-1) in thromboregulation, cerebroprotection, and cardioprotection,” Seminars in Thrombosis and Hemostasis, vol. 31, no. 2, pp. 234–246, 2005. View at Publisher · View at Google Scholar · View at Scopus
  91. B. U. Failer, N. Braun, and H. Zimmermann, “Cloning, expression, and functional characterization of a Ca2+-dependent endoplasmic reticulum nucleoside diphosphatase,” The Journal of Biological Chemistry, vol. 277, no. 40, pp. 36978–36986, 2002. View at Publisher · View at Google Scholar · View at Scopus
  92. C. Devader, R. J. Webb, G. M. H. Thomas, and L. Dale, “Xenopus apyrase (xapy), a secreted nucleotidase that is expressed during early development,” Gene, vol. 367, no. 1-2, pp. 135–141, 2006. View at Publisher · View at Google Scholar · View at Scopus
  93. J. G. Valenzuela, Y. Belkaid, E. Rowton, and J. M. C. Ribeiro, “The salivary apyrase of the blood-sucking sand fly Phlebotomus papatasi belongs to the novel Cimex family of apyrases,” Journal of Experimental Biology, vol. 204, no. 2, pp. 229–237, 2001. View at Google Scholar · View at Scopus
  94. D. Sun, A. Mcnicol, A. A. James, and Z. Peng, “Expression of functional recombinant mosquito salivary apyrase: a potential therapeutic platelet aggregation inhibitor,” Platelets, vol. 17, no. 3, pp. 178–184, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. M. Andersson, “Diadenosine tetraphosphate (Ap4A): its presence and functions in biological systems,” International Journal of Biochemistry, vol. 21, no. 7, pp. 707–714, 1989. View at Google Scholar · View at Scopus
  96. H. Schlüter, M. Tepel, and W. Zidek, “Vascular actions of diadenosine phosphates,” Journal of Autonomic Pharmacology, vol. 16, no. 6, pp. 357–362, 1996. View at Google Scholar · View at Scopus
  97. L. L. Kisselev, J. Justesen, A. D. Wolfson, and L. Y. Frolova, “Diadenosine oligophosphates (AP(n)A), a novel class of signalling molecules?” FEBS Letters, vol. 427, no. 2, pp. 157–163, 1998. View at Publisher · View at Google Scholar · View at Scopus
  98. B. M. Stavrou, “Diadenosine polyphosphates: postulated mechanisms mediating the cardiac effects,” Current Medicinal Chemistry, vol. 1, no. 2, pp. 151–169, 2003. View at Google Scholar · View at Scopus
  99. E. Calvo and J. M. C. Ribeiro, “A novel secreted endonuclease from Culex quinquefasciatus salivary glands,” Journal of Experimental Biology, vol. 209, no. 14, pp. 2651–2659, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. J. G. Valenzuela, M. Garfield, E. D. Rowton, and V. M. Pham, “Identification of the most abundant secreted proteins from the salivary glands of the sand fly Lutzomyia longipalpis, vector of Leishmania chagasi,” Journal of Experimental Biology, vol. 207, no. 21, pp. 3717–3729, 2004. View at Publisher · View at Google Scholar · View at Scopus
  101. J. M. Anderson, F. Oliveira, S. Kamhawi et al., “Comparative salivary gland transcriptomics of sandfly vectors of visceral leishmaniasis,” BMC Genomics, vol. 7, article 52, 2006. View at Publisher · View at Google Scholar · View at Scopus
  102. J. M. C. Ribeiro, R. Charlab, and J. G. Valenzuela, “The salivary adenosine deaminase activity of the mosquitoes Culex quinquefasciatus and Aedes aegypti,” Journal of Experimental Biology, vol. 204, no. 11, pp. 2001–2010, 2001. View at Google Scholar · View at Scopus
  103. R. Charlab, E. D. Rowton, and J. M. C. Ribeiro, “The salivary adenosine deaminase from the sand fly Lutzomyia longipalpis,” Experimental Parasitology, vol. 95, no. 1, pp. 45–53, 2000. View at Publisher · View at Google Scholar · View at Scopus
  104. H. Kato, R. C. Jochim, P. G. Lawyer, and J. G. Valenzuela, “Identification and characterization of a salivary adenosine deaminase from the sand fly Phlebotomus duboscqi, the vector of Leishmania major in sub-Saharan Africa,” Journal of Experimental Biology, vol. 210, no. 5, pp. 733–740, 2007. View at Publisher · View at Google Scholar · View at Scopus
  105. S. J. Harris, R. V. Parry, J. Westwick, and S. G. Ward, “Phosphoinositide lipid phosphatases: natural regulators of phosphoinositide 3-kinase signaling in T lymphocytes,” The Journal of Biological Chemistry, vol. 283, no. 5, pp. 2465–2469, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. S. P. Watson, B. Reep, R. T. McConnell, and E. G. Lapetina, “Collagen stimulates [3H]inositol triphosphate formation in indomethacin-treated human platelets,” Biochemical Journal, vol. 226, no. 3, pp. 831–837, 1985. View at Google Scholar · View at Scopus
  107. R. Amino, A. S. Tanaka, and S. Schenkman, “Triapsin, an unusual activatable serine protease from the saliva of the hematophagous vector of Chagas' disease Triatoma infestans (Hemiptera: Reduviidae),” Insect Biochemistry and Molecular Biology, vol. 31, no. 4-5, pp. 465–472, 2001. View at Publisher · View at Google Scholar · View at Scopus
  108. G. Colebatch, P. Cooper, and P. East, “cDNA cloning of a salivary chymotrypsin-like protease and the identification of six additional cDNAs encoding putative digestive proteases from the green mirid, Creontiades dilutus (Hemiptera: Miridae),” Insect Biochemistry and Molecular Biology, vol. 32, no. 9, pp. 1065–1075, 2002. View at Publisher · View at Google Scholar · View at Scopus
  109. Y. C. Zhu, F. Zeng, and B. Oppert, “Molecular cloning of trypsin-like cDNAs and comparison of proteinase activities in the salivary glands and gut of the tarnished plant bug Lygus lineolaris (Heteroptera: Miridae),” Insect Biochemistry and Molecular Biology, vol. 33, no. 9, pp. 889–899, 2003. View at Publisher · View at Google Scholar · View at Scopus
  110. F. Zeng, Y. C. Zhu, and A. C. Cohen, “Molecular cloning and partial characterization of a trypsin-like protein in salivary glands of Lygus hesperus (hemiptera: Miridae),” Insect Biochemistry and Molecular Biology, vol. 32, no. 4, pp. 455–464, 2002. View at Publisher · View at Google Scholar · View at Scopus
  111. I. M. B. Francischetti, T. N. Mather, and J. M. C. Ribeiro, “Cloning of a salivary gland metalloprotease and characterization of gelatinase and fibrin(ogen)lytic activities in the saliva of the Lyme disease tick vector Ixodes scapularis,” Biochemical and Biophysical Research Communications, vol. 305, no. 4, pp. 869–875, 2003. View at Publisher · View at Google Scholar · View at Scopus
  112. I. M. B. Francischetti, T. N. Mather, and J. M. C. Ribeiro, “Tick saliva is a potent inhibitor of endothelial cell proliferation and angiogenesis,” Thrombosis and Haemostasis, vol. 94, no. 1, pp. 167–174, 2005. View at Publisher · View at Google Scholar · View at Scopus
  113. M. P. Williamson, D. Marion, and K. Wüthrich, “Secondary structure in the solution conformation of the proteinase inhibitor IIA from bull seminal plasma by nuclear magnetic resonance,” Journal of Molecular Biology, vol. 173, no. 3, pp. 341–359, 1984. View at Google Scholar · View at Scopus
  114. I. T. N. Campos, R. Amino, C. A. M. Sampaio et al., “Infestin, a thrombin inhibitor presents in Triatoma infestans midgut, a Chagas' disease vector: gene cloning, expression and characterization of the inhibitor,” Insect Biochemistry and Molecular Biology, vol. 32, no. 9, pp. 991–997, 2002. View at Publisher · View at Google Scholar · View at Scopus
  115. D. V. Lovato, I. T. Nicolau de Campos, R. Amino, and A. S. Tanaka, “The full-length cDNA ofanticoagulant protein infestin revealed anovel releasable Kazal domain, aneutrophil elastase inhibitor lacking anticoagulant activity,” Biochimie, vol. 88, no. 6, pp. 673–681, 2006. View at Publisher · View at Google Scholar · View at Scopus
  116. T. Friedrich, B. Kroger, S. Bialojan et al., “A Kazal-type inhibitor with thrombin specificity from Rhodnius prolixus,” The Journal of Biological Chemistry, vol. 268, no. 22, pp. 16216–16222, 1993. View at Google Scholar · View at Scopus
  117. K. Mende, O. Petoukhova, V. Koulitchkova et al., “Dipetalogastin, a potent thrombin inhibitor from the blood-sucking insect Dipetalogaster maximus. cDNA cloning, expression and characterization,” European Journal of Biochemistry, vol. 266, no. 2, pp. 583–590, 1999. View at Publisher · View at Google Scholar · View at Scopus
  118. H. Isawa, M. Yuda, K. Yoneda, and Y. Chinzei, “The insect salivary protein, prolixin-S, inhibits factor IXa generation and Xase complex formation in the blood coagulation pathway,” The Journal of Biological Chemistry, vol. 275, no. 9, pp. 6636–6641, 2000. View at Publisher · View at Google Scholar · View at Scopus
  119. H. J. Mägert, L. Ständker, P. Kreutzmann et al., “LEKTI, a novel 15-domain type of human serine proteinase inhibitor,” The Journal of Biological Chemistry, vol. 274, no. 31, pp. 21499–21502, 1999. View at Publisher · View at Google Scholar · View at Scopus
  120. R. Augustin, S. Siebert, and T. C. G. Bosch, “Identification of a kazal-type serine protease inhibitor with potent anti-staphylococcal activity as part of Hydra's innate immune system,” Developmental and Comparative Immunology, vol. 33, no. 7, pp. 830–837, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. P. Takáč, M. A. Nunn, J. Mészáros et al., “Vasotab, a vasoactive peptide from horse fly Hybomitra bimaculata (Diptera, Tabanidae) salivary glands,” Journal of Experimental Biology, vol. 209, no. 2, pp. 343–352, 2006. View at Publisher · View at Google Scholar · View at Scopus
  122. M. R. Kanost, “Serine proteinase inhibitors in arthropod immunity,” Developmental and Comparative Immunology, vol. 23, no. 4-5, pp. 291–301, 1999. View at Publisher · View at Google Scholar · View at Scopus
  123. J. C. Rau, L. M. Beaulieu, J. A. Huntington, and F. C. Church, “Serpins in thrombosis, hemostasis and fibrinolysis,” Journal of Thrombosis and Haemostasis, vol. 5, no. 1, pp. 102–115, 2007. View at Publisher · View at Google Scholar · View at Scopus
  124. K. R. Stark and A. A. James, “Isolation and characterization of the gene encoding a novel factor Xa-directed anticoagulant from the yellow fever mosquito, Aedes aegypti,” The Journal of Biological Chemistry, vol. 273, no. 33, pp. 20802–20809, 1998. View at Publisher · View at Google Scholar · View at Scopus
  125. E. Calvo, D. M. Mizurini, A Sá-Nunes et al., “Alboserpin, a factor Xa inhibitor from the mosquito vector of yellow fever, binds heparin and membrane phospholipids and exhibits antithrombotic activity,” The Journal of Biological Chemistry, vol. 286, no. 32, pp. 27998–28010, 2011. View at Google Scholar
  126. C. Kellenberger and A. Roussel, “Structure-activity relationship within the serine protease inhibitors of the Pacifastin family,” Protein and Peptide Letters, vol. 12, no. 5, pp. 409–414, 2005. View at Publisher · View at Google Scholar · View at Scopus
  127. M. Abrahamson, M. Alvarez-Fernandez, and C. M. Nathanson, “Cystatins,” Biochemical Society Symposium, no. 70, pp. 179–199, 2003. View at Google Scholar · View at Scopus
  128. M. Solomon, B. Belenghi, M. Delledonne, E. Menachem, and A. Levine, “The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants,” Plant Cell, vol. 11, no. 3, pp. 431–443, 1999. View at Publisher · View at Google Scholar · View at Scopus
  129. M. Estelle, “Proteases and cellular regulation in plants,” Current Opinion in Plant Biology, vol. 4, no. 3, pp. 254–260, 2001. View at Publisher · View at Google Scholar · View at Scopus
  130. M. Kotsyfakis, A. Sá-Nunes, I. M. B. Francischetti, T. N. Mather, J. F. Andersen, and J. M. C. Ribeiro, “Antiinflammatory and immunosuppressive activity of sialostatin L, a salivary cystatin from the tick Ixodes scapularis,” The Journal of Biological Chemistry, vol. 281, no. 36, pp. 26298–26307, 2006. View at Publisher · View at Google Scholar · View at Scopus
  131. D. R. Flower, A. C. T. North, and C. E. Sansom, “The lipocalin protein family: structural and sequence overview,” Biochimica et Biophysica Acta, vol. 1482, no. 1-2, pp. 9–24, 2000. View at Publisher · View at Google Scholar · View at Scopus
  132. J. F. Andersen, N. P. Gudderra, I. M. B. Francischetti, and J. M. C. Ribeiro, “The role of salivary lipocalins in blood feeding by Rhodnius prolixus,” Archives of Insect Biochemistry and Physiology, vol. 58, no. 2, pp. 97–105, 2005. View at Publisher · View at Google Scholar · View at Scopus
  133. S. Schlehuber and A. Skerra, “Lipocalins in drug discovery: from natural ligand-binding proteins to 'anticalins',” Drug Discovery Today, vol. 10, no. 1, pp. 23–33, 2005. View at Publisher · View at Google Scholar · View at Scopus
  134. S. Ohno, Evolution by Gene Duplication, Springer, Berlin, Germany, 1970.
  135. E. V. Koonin, “Orthologs, paralogs, and evolutionary genomics,” Annual Review of Genetics, vol. 39, pp. 309–338, 2005. View at Publisher · View at Google Scholar · View at Scopus
  136. B. J. Mans, A. I. Louw, and A. W. H. Neitz, “Evolution of hematophagy in ticks: common-origins for blood coagulation and platelet aggregation inhibitors from soft ticks of the genus Ornithodoros,” Molecular Biology and Evolution, vol. 19, no. 10, pp. 1695–1705, 2002. View at Google Scholar · View at Scopus
  137. M. Hurles, “Gene duplication: the genomic trade in spare parts,” PLos Biology, vol. 2, no. 7, Article ID E206, 2004. View at Publisher · View at Google Scholar · View at Scopus
  138. J. M. C. Ribeiro, B. J. Mans, and B. Arcà, “An insight into the sialome of blood-feeding Nematocera,” Insect Biochemistry and Molecular Biology, vol. 40, no. 11, pp. 767–784, 2010. View at Publisher · View at Google Scholar · View at Scopus
  139. B. G. Fry, K. Roelants, D. E. Champagne et al., “The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms,” Annual Review of Genomics and Human Genetics, vol. 10, pp. 483–511, 2009. View at Publisher · View at Google Scholar · View at Scopus
  140. J. M. C Ribeiro and B. Arca, “From sialomes to the sialoverse: an insight into the salivary potion of blood feeding insects,” Advances in Insect Physiology, vol. 37, pp. 59–118, 2009. View at Google Scholar
  141. Y. Zhang, J. M. C. Ribeiro, J. A. Guimarães, and P. N. Walsh, “Nitrophorin-2: a novel mixed-type reversible specific inhibitor of the intrinsic factor-X activating complex,” Biochemistry, vol. 37, no. 30, pp. 10681–10690, 1998. View at Publisher · View at Google Scholar · View at Scopus
  142. B. J. Mans and J. M. C. Ribeiro, “Function, mechanism and evolution of the moubatin-clade of soft tick lipocalins,” Insect Biochemistry and Molecular Biology, vol. 38, no. 9, pp. 841–852, 2008. View at Publisher · View at Google Scholar · View at Scopus
  143. B. J. Mans and J. M. C. Ribeiro, “A novel clade of cysteinyl leukotriene scavengers in soft ticks,” Insect Biochemistry and Molecular Biology, vol. 38, no. 9, pp. 862–870, 2008. View at Publisher · View at Google Scholar · View at Scopus
  144. B. J. Mans, J. M. C. Ribeiro, and J. F. Andersen, “Structure, function, and evolution of biogenic amine-binding proteins in soft ticks,” The Journal of Biological Chemistry, vol. 283, no. 27, pp. 18721–18733, 2008. View at Publisher · View at Google Scholar · View at Scopus
  145. S. Sangamnatdej, G. C. Paesen, M. Slovak, and P. A. Nuttall, “A high affinity serotonin- and histamine-binding lipocalin from tick saliva,” Insect Molecular Biology, vol. 11, no. 1, pp. 79–86, 2002. View at Publisher · View at Google Scholar · View at Scopus
  146. G. C. Paesen, P. L. Adams, P. A. Nuttall, and D. L. Stuart, “Tick histamine-binding proteins: lipocalins with a second binding cavity,” Biochimica et Biophysica Acta, vol. 1482, no. 1-2, pp. 92–101, 2000. View at Publisher · View at Google Scholar · View at Scopus
  147. G. C. Paesen, P. L. Adams, K. Harlos, P. A. Nuttall, and D. I. Stuart, “Tick histamine-binding proteins: isolation, cloning, and three-dimensional structure,” Molecular Cell, vol. 3, no. 5, pp. 661–671, 1999. View at Google Scholar · View at Scopus
  148. M. A. Nunn, A. Sharma, G. C. Paesen et al., “Complement inhibitor of C5 activation from the soft tick Ornithodoros moubata,” Journal of Immunology, vol. 174, no. 4, pp. 2084–2091, 2005. View at Google Scholar · View at Scopus
  149. V. B. Wigglesworth et al., “The fate of haemoglobin in Rhodnius prolixus (Hemiptera) and other blood-sucking arthropods,” Proceedings of the Royal Society B, vol. 131, pp. 313–339, 1942. View at Google Scholar
  150. J. M. C. Ribeiro, M. Schneider, T. Isaias, J. Jurberg, C. Galvão, and J. A. Guimarães, “Role of salivary antihemostatic components in blood feeding by triatomine bugs (Heteroptera),” Journal of Medical Entomology, vol. 35, no. 4, pp. 599–610, 1998. View at Google Scholar · View at Scopus
  151. K. Galindo and D. P. Smith, “A large family of divergent Drosophila odorant-binding proteins expressed in gustatory and olfactory sensilla,” Genetics, vol. 159, no. 3, pp. 1059–1072, 2001. View at Google Scholar · View at Scopus
  152. D. S. Hekmat-Scafe, R. L. Dorit, and J. R. Carlson, “Molecular evolution of odorant-binding protein genes OS-E and OS-F in Drosophila,” Genetics, vol. 155, no. 1, pp. 117–127, 2000. View at Google Scholar · View at Scopus
  153. E. Calvo, B. J. Mans, J. M. C. Ribeiro, and J. F. Andersen, “Multifunctionality and mechanism of ligand binding in a mosquito antiinflammatory protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 10, pp. 3728–3733, 2009. View at Publisher · View at Google Scholar · View at Scopus
  154. B. J. Mans, E. Calvo, J. M. C. Ribeiro, and J. F. Andersen, “The crystal structure of D7r4, a salivary biogenic amine-binding protein from the malaria mosquito Anopheles gambiae,” The Journal of Biological Chemistry, vol. 282, no. 50, pp. 36626–36633, 2007. View at Publisher · View at Google Scholar · View at Scopus
  155. E. Calvo, B. J. Mans, J. F. Andersen, and J. M. C. Ribeiro, “Function and evolution of a mosquito salivary protein family,” The Journal of Biological Chemistry, vol. 281, no. 4, pp. 1935–1942, 2006. View at Publisher · View at Google Scholar · View at Scopus
  156. H. Isawa, M. Yuda, Y. Orito, and Y. Chinzei, “A mosquito salivary protein inhibits activation of the plasma contact system by binding to factor XII and high molecular weight kininogen,” The Journal of Biological Chemistry, vol. 277, no. 31, pp. 27651–27658, 2002. View at Publisher · View at Google Scholar · View at Scopus
  157. G. M. Gibbs, K. Roelants, and M. K. O'Bryan, “The CAP superfamily: cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins—roles in reproduction, cancer, and immune defense,” Endocrine Reviews, vol. 29, no. 7, pp. 865–897, 2008. View at Publisher · View at Google Scholar · View at Scopus
  158. Y. Yamazaki and T. Morita, “Structure and function of snake venom cysteine-rich secretory proteins,” Toxicon, vol. 44, no. 3, pp. 227–231, 2004. View at Publisher · View at Google Scholar · View at Scopus
  159. Y. Yamazaki, H. Koike, Y. Sugiyama et al., “Cloning and characterization of novel snake venom proteins that block smooth muscle contraction,” European Journal of Biochemistry, vol. 269, no. 11, pp. 2708–2715, 2002. View at Publisher · View at Google Scholar · View at Scopus
  160. M. Nobile, F. Noceti, G. Prestipino, and L. D. Possani, “Helothermine, a lizard venom toxin, inhibits calcium current in cerebellar granules,” Experimental Brain Research, vol. 110, no. 1, pp. 15–20, 1996. View at Google Scholar · View at Scopus
  161. M. Ameri, X. Wang, M. J. Wilkerson, M. R. Kanost, and A. B. Broce, “An immunoglobulin binding protein (antigen 5) of the stable fly (diptera: Muscidae) salivary gland stimulates bovine immune responses,” Journal of Medical Entomology, vol. 45, no. 1, pp. 94–101, 2008. View at Publisher · View at Google Scholar · View at Scopus
  162. D. Ma, X. Xu, S. An et al., “A novel family of RGD-containing disintegrins (Tablysin-15) from the salivary gland of the horsefly tabanus yao targets αIIbβ3 or αVβ3 and inhibits platelet aggregation and angiogenesis,” Thrombosis and Haemostasis, vol. 105, no. 6, pp. 1032–1045, 2011. View at Publisher · View at Google Scholar · View at Scopus
  163. D. Ma, Y. Wang, H. Yang et al., “Anti-thrombosis repertoire of blood-feeding horsefly salivary glands,” Molecular and Cellular Proteomics, vol. 8, no. 9, pp. 2071–2079, 2009. View at Publisher · View at Google Scholar · View at Scopus
  164. X. Xu, H. Yang, D. Ma et al., “Toward an understanding of the molecular mechanism for successful blood feeding by coupling proteomics analysis with pharmacological testing of horsefly salivary glands,” Molecular and Cellular Proteomics, vol. 7, no. 3, pp. 582–590, 2008. View at Publisher · View at Google Scholar · View at Scopus
  165. D. C. de Graaf, M. Aerts, M. Brunain et al., “Insights into the venom composition of the ectoparasitoid wasp Nasonia vitripennis from bioinformatic and proteomic studies,” Insect Molecular Biology, vol. 19, no. 1, pp. 11–26, 2010. View at Publisher · View at Google Scholar · View at Scopus
  166. J. Alves-Silva, J. M. C. Ribeiro, J. van den Abbeele et al., “An insight into the sialome of Glossina morsitans morsitans,” BMC Genomics, vol. 11, no. 1, article 213, 2010. View at Publisher · View at Google Scholar · View at Scopus
  167. D. R. Maddison, K. S. Schulz, and W. P. Maddison, “The tree of life web project,” Zootaxa, no. 1668, pp. 19–40, 2007. View at Google Scholar · View at Scopus
  168. C. Galvão, J. S. Patterson, D. Da Silva Rocha et al., “A new species of Triatominae from Tamil Nadu, India,” Medical and Veterinary Entomology, vol. 16, no. 1, pp. 75–82, 2002. View at Publisher · View at Google Scholar · View at Scopus