Table of Contents Author Guidelines Submit a Manuscript
Psyche
Volume 2012, Article ID 532652, 14 pages
http://dx.doi.org/10.1155/2012/532652
Research Article

Pheromone Production, Attraction, and Interspecific Inhibition among Four Species of Ips Bark Beetles in the Southeastern USA

1Division of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 102, 230 53 Alnarp, Sweden
2Department of Entomology, University of Georgia, Athens, GA 30602, USA

Received 9 December 2011; Accepted 26 January 2012

Academic Editor: John A. Byers

Copyright © 2012 Göran Birgersson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. L. Wood, “The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph,” Great Basin Naturalist Memoirs, no. 6, p. 1359, 1982. View at Google Scholar
  2. G. R. Hopping, “The North American species in groups IV and V of Ips de Geer (Coleoptera: Scolytidae),” Canadian Entomologist, vol. 96, no. 7, pp. 970–978, 1964. View at Google Scholar
  3. G. R. Hopping, “The North American species in groups IX of Ips de Geer (Coleoptera: Scolytidae),” Canadian Entomologist, vol. 97, no. 4, pp. 422–434, 1965. View at Google Scholar
  4. G. R. Hopping, “The North American species in groups X of Ips de Geer (Coleoptera: Scolytidae),” Canadian Entomologist, vol. 97, no. 8, pp. 803–809, 1965. View at Google Scholar
  5. J. H. Borden, “Aggregation pheromones,” in Bark Beetles in North American Conifers, J. B. Mitton and K. B. Sturgeon, Eds., 1984. View at Google Scholar
  6. J. H. Borden, “Aggregation pheromones,” in Comprehensive Insect Physiology, Biochemistry, and Pharmacology, G. A. Kerkut and L. I. Gilbert, Eds., 1985. View at Google Scholar
  7. F. Schlyter and F. G. Birgersson, “Forest beetles,” in Pheromones of Non-Lepidopteran Insect Pests of Agricultural Plants, R. J. Hardie and A. K. Minks, Eds., pp. 113–148, CABI Publishers, 2000. View at Google Scholar
  8. R. M. Silverstein, J. O. Rodin, and D. L. Wood, “Sex attractants in frass produced by male Ips confusus in ponderosa pine,” Science, vol. 154, no. 3748, pp. 509–510, 1966. View at Google Scholar
  9. J. P. Vité, A. Bakke, and J. A. A. Renwick, “Pheromones in Ips (Coleoptera: Scolytidae): occurrence and production,” Canadian Entomologist, vol. 104, no. 12, pp. 1967–1975, 1972. View at Google Scholar
  10. A. Bakke, “Aggregation pheromone in the bark beetle Ips duplicatus,” Norwegian Journal of Entomology, vol. 22, no. 1, pp. 67–69, 1975. View at Google Scholar
  11. W. Francke, V. Heemann, and B. Gerken, “2 Ethyl 1,6 dioxaspiro[4.4]nonane, principal aggregation pheromone of Pityogenes chalcographus,” Naturwissenschaften, vol. 64, no. 11, pp. 590–591, 1977. View at Google Scholar · View at Scopus
  12. J. A. Byers, G. Birgersson, J. Löfqvist, and G. Bergström, “Synergistic pheromones and monoterpenes enable aggregation and host recognition by a bark beetle, Pityogenes chalcographus,” Naturwissenschaften, vol. 75, no. 3, pp. 153–155, 1988. View at Publisher · View at Google Scholar · View at Scopus
  13. J. A. Byers, F. Schlyter, G. Birgersson, and W. Francke, “E-myrcenol in Ips, duplicatus: an aggregation pheromone component new for bark beetles,” Experientia, vol. 46, no. 11-12, pp. 1209–1211, 1990. View at Publisher · View at Google Scholar · View at Scopus
  14. S. A. Teale, F. X. Webster, A. Zhang, and G. N. Lanier, “Lanierone: a new pheromone component from Ips pini (Coleoptera: Scolytidae) in New York,” Journal of Chemical Ecology, vol. 17, no. 6, pp. 1159–1176, 1991. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Birgersson and G. Bergström, “Volatiles released from individual spruce bark beetle entrance holes Quantitative variations during the first week of attack,” Journal of Chemical Ecology, vol. 15, no. 10, pp. 2465–2483, 1989. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Birgersson, F. Schlyter, J. Löfqvist, and G. Bergström, “Quantitative variation of pheromone components in the spruce bark beetle Ips typographus from different attack phases,” Journal of Chemical Ecology, vol. 10, no. 7, pp. 1029–1055, 1984. View at Publisher · View at Google Scholar · View at Scopus
  17. W. A. Garland and M. L. Powell, “Quantitative selected ion monitoring (QSIM) of drugs and/or drug metabolites in biological matrices,” Journal of Chromatographic Science, vol. 19, no. 8, pp. 392–434, 1981. View at Google Scholar · View at Scopus
  18. H. E. M. Dobson, “Analysis of flower and pollen volatiles,” in Modern Method of Plant Analysis, Eessential Oils and Waxes, H. F. Linskens and J. F. Jackson, Eds., vol. 12 of New series, Springer, Berlin, Germany, 1991. View at Google Scholar
  19. W. A. König, R. Krebber, and G. Wenz, “Enantioselective capillary gas chromatography on the basis of host-guest interactions with modified cyclodextrins,” High Resolution Chromatography, vol. 12, no. 10, pp. 641–644, 1989. View at Google Scholar
  20. J. A. Byers, G. Birgersson, J. Löfqvist, M. Appelgren, and G. Bergström, “Isolation of pheromone synergists of bark beetle, Pityogenes chalcographus, from complex insect-plant odors by fractionation and subtractive-combination bioassay,” Journal of Chemical Ecology, vol. 16, no. 3, pp. 861–876, 1990. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Lejfalk and G. Birgersson, “Wick-baits – a novel delivery system for testing potential semiochemicals,” in Proceedings of the 14th Annual Meeting of the International Society of Chemical Ecology, Vancouver, Canada, 1997.
  22. A. Bakke, P. Frøyen, and L. Skattebøl, “Field response to a new pheromonal compound isolated from Ips typographus,” Naturwissenschaften, vol. 64, no. 2, pp. 98–99, 1977. View at Google Scholar · View at Scopus
  23. A. Bakke, “The utilization of aggregation pheromone for control of the spruce bark beetle,” in Insect Pheromone Technology: Chemistry and application, B. A. Leonhart and M. Beroza, Eds., ACS Symposium Series, no. 190, Washington, DC, USA, 1982. View at Google Scholar
  24. A. Bakke, “The recent Ips typographus outbreak in Norway experiences from a control program,” Holarctic Ecology, vol. 12, no. 4, pp. 515–519, 1989. View at Google Scholar · View at Scopus
  25. J. P. Vite, “The European struggle to control Ips typographus: past, present and future,” Holarctic Ecology, vol. 12, no. 4, pp. 520–525, 1989. View at Google Scholar · View at Scopus
  26. F. Schlyter, G. Birgersson, J. A. Byers, J. Löfqvist, and G. Bergström, “Field response of spruce bark beetle, Ips typographus, to aggregation pheromone candidates,” Journal of Chemical Ecology, vol. 13, no. 4, pp. 701–716, 1987. View at Publisher · View at Google Scholar · View at Scopus
  27. J. A. A. Renwick, G. B. Pitman, and J. P. Vité, “2-Phenylethanol isolated from bark beetles,” Die Naturwissenschaften, vol. 63, no. 4, p. 198, 1976. View at Publisher · View at Google Scholar · View at Scopus
  28. N. Tomescu, B. B. Kis, I. Opreanu, and L. Tautan, “Modifications of the response of Ips typographus (Coleoptera: Scolytidae) to the aggregation pheromone in mixture with other substances,” Revue Roumaine de Biologie Serie de Biologie Animale, vol. 27, no. 1, pp. 77–80, 1982. View at Google Scholar
  29. D. S. Pureswaran, R. Gries, J. H. Borden, and H. D. Pierce, “Dynamics of pheromone production and communication in the mountain pine beetle, Dendroctonus ponderosae Hopkins, and the pine engraver, Ips pini (Say) (Coleoptera: Scolytidae),” Chemoecology, vol. 10, no. 4, pp. 153–168, 2000. View at Google Scholar · View at Scopus
  30. F. Schlyter, J. Lofqvist, and J. A. Byers, “Behavioural sequence in the attraction of the bark beetle Ips typographus to pheromone sources,” Physiological Entomology, vol. 12, no. 2, pp. 185–196, 1987. View at Google Scholar · View at Scopus
  31. J. C. Dickens, “Behavioural and electrophysiological responses of the bark beetle, Ips typographus, to potential pheromone components,” Physiological Entomology, vol. 6, no. 3, pp. 251–261, 1981. View at Google Scholar
  32. M. C. Birch, D. M. Light, D. L. Wood et al., “Pheromonal attraction and allomonal interruption of Ips pini in California by the two enantiomers of Ipsdienol,” Journal of Chemical Ecology, vol. 6, no. 3, pp. 703–717, 1980. View at Publisher · View at Google Scholar · View at Scopus
  33. G. N. Lanier, A. Classon, T. Stewart, J. J. Piston, and R. M. Silverstein, “Ips pini: the basis for interpopulational differences in pheromone biology,” Journal of Chemical Ecology, vol. 6, no. 3, pp. 677–687, 1980. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Gries, H. D. Pierce Jr., B. S. Lindgren, and J. H. H. Borden, “New techniques for capturing and analyzing semiochemicals for scolytid beetles (Coleoptera: Scolytidae),” Journal of Economic Entomology, vol. 81, no. 6, pp. 1715–1720, 1988. View at Google Scholar
  35. D. R. Miller, G. Gries, and J. H. Borden, “E-myrcenol: a new pheromone for the pine engraver, Ips pini (Say) (Coleoptera: Scolytidae),” Canadian Entomologist, vol. 122, no. 5-6, pp. 401–406, 1990. View at Google Scholar
  36. D. R. Miller, C. Asaro, and C. W. Berisford, “Attraction of southern pine engravers and associated bark beetles (Coleoptera: Scolytidae) to Ipsenol, Ipsdienol, and lanierone in Southeastern United States,” Journal of Economic Entomology, vol. 98, no. 6, pp. 2058–2066, 2005. View at Google Scholar · View at Scopus
  37. USDA Forest, “Insects of eastern conifers,” USDA Forest Service Miscellaneous Publications, no. 1426. 1985.
  38. G. Birgersson, M. J. Dalusky, and C. W. Berisford, “Identification of an aggregation pheromone for Pityogenes hopkinsi (Coleoptera: Scolytidae),” Canadian Entomologist, vol. 132, no. 6, pp. 951–963, 2000. View at Google Scholar · View at Scopus
  39. D. Klimetzek and W. Francke, “Relationship between the enantiomeric composition of α-pinene in host trees and the production of verbenols in Ips-species,” Experientia, vol. 36, no. 12, pp. 1343–1345, 1980. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Lindström, T. Norin, G. Birgersson, and F. Schlyter, “Variation of enantiomeric composition of α-pinene in norway spruce, Picea abies, and its influence on production of verbenol isomers by Ips typographus in the field,” Journal of Chemical Ecology, vol. 15, no. 2, pp. 541–548, 1989. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Ivarsson, F. Schlyter, and G. Birgersson, “Demonstration of de novo pheromone biosynthesis in Ips duplicatus (Coleoptera: Scolytidae): inhibition of Ips dienol and E-Myrcenol production by compactin,” Insect Biochemistry and Molecular Biology, vol. 23, no. 6, pp. 655–662, 1993. View at Google Scholar · View at Scopus
  42. P. Ivarsson and G. Birgersson, “Regulation and biosynthesis of pheromone components in the double spined bark beetle Ips duplicatus (Coleoptera: Scolytidae),” Journal of Insect Physiology, vol. 41, no. 10, pp. 843–849, 1995. View at Publisher · View at Google Scholar · View at Scopus
  43. S. J. Seybold, D. R. Quilici, J. A. Tillman, D. Vanderwel, D. L. Wood, and G. J. Blomquist, “De novo biosynthesis of the aggregation pheromone components Ips enol and Ips dienol by the pine bark beetles Ips paraconfusus lanier and Ips pini (Say) (Coleoptera: Scolytidae),” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 18, pp. 8393–8397, 1995. View at Publisher · View at Google Scholar · View at Scopus
  44. R. H. Fish, L. E. Browne, D. L. Wood, and L. B. Hendry, “Pheromone biosynthetic pathways: conversions of deuterium labelled Ips dienol with sexual and enantioselectivity in Ips paraconfusus lanier,” Tetrahedron Letters, vol. 20, no. 17, pp. 1465–1468, 1979. View at Google Scholar · View at Scopus
  45. B. S. Lanne, P. Ivarsson, P. Johnsson, G. Bergström, and A. B. Wassgren, “Biosynthesis of 2-methyl-3-buten-2-ol, a pheromone component of Ips typographus (Coleoptera: Scolytidae),” Insect Biochemistry, vol. 19, no. 2, pp. 163–167, 1989. View at Google Scholar · View at Scopus
  46. P. Ivarsson, The pheromone systems of the spruce bark beetles, Ips duplicatus and I. typographus: biosynthesis and regulations, Ph.D. thesis, Göteborg University, Sweden, 1995.
  47. S. Seybold, The role of chirality in the olfactory-directed aggregation behavior of pine engraver beetles in the genus Ips (Coleoptera: Scolytidae), Ph.D. thesis, Department of Entomology, University of California, Berkeley, Calif, USA, 1992.
  48. S. J. Seybold, T. Ohtsuka, D. L. Wood, and I. Kubo, “Enantiomeric composition of Ips dienol: a chemotaxonomic character for north American populations of Ips spp. in the Ips subgeneric group (coleoptera: Scolytidae),” Journal of Chemical Ecology, vol. 21, no. 7, pp. 995–1016, 1995. View at Publisher · View at Google Scholar · View at Scopus
  49. U. Kohnle, J. P. Vite, H. Meyer, and W. Francke, “Response of 4 American engraver bark beetles, Ips spp. (Col, Scolytidae), to synthetic racemates of chiral pheromones,” Journal of Applied Entomology, vol. 117, no. 5, pp. 451–456, 1994. View at Google Scholar · View at Scopus
  50. D. R. Miller, J. H. Borden, and K. N. Slessor, “Enantiospecific pheromone production and response profiles for populations of pine engraver, Ips pini (Say) (Coleoptera: scolytidae), in British Columbia,” Journal of Chemical Ecology, vol. 22, no. 11, pp. 2157–2172, 1996. View at Google Scholar · View at Scopus
  51. S. J. Seybold, S. A. Teale, D. L. Wood et al., “The role of lanierone in the chemical ecology of Ips pini (Coleoptera: Scolytidae) in California,” Journal of Chemical Ecology, vol. 18, no. 12, pp. 2305–2329, 1992. View at Publisher · View at Google Scholar · View at Scopus
  52. D. R. Miller, K. E. Gibson, K. F. Raffa, S. J. Seybold, S. A. Teale, and D. L. Wood, “Geographic variation in response of pine engraver, Ips pini, and associated species to pheromone, lanierone,” Journal of Chemical Ecology, vol. 23, no. 8, pp. 2013–2031, 1997. View at Google Scholar