Table of Contents Author Guidelines Submit a Manuscript
Radiology Research and Practice
Volume 2013, Article ID 580839, 6 pages
http://dx.doi.org/10.1155/2013/580839
Clinical Study

Comparison of the Number of Image Acquisitions and Procedural Time Required for Transarterial Chemoembolization of Hepatocellular Carcinoma with and without Tumor-Feeder Detection Software

1Department of Radiology, Nissay Hospital, 6-3-8 Itachibori, Nishi-ku, Osaka 550-0012, Japan
2Department of Radiology, Komatsu Hospital, 11-6 Kawakatsucho, Neyagawa 572-8567, Japan

Received 17 April 2013; Revised 29 June 2013; Accepted 1 July 2013

Academic Editor: Sotirios Bisdas

Copyright © 2013 Jin Iwazawa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C.-M. Lo, H. Ngan, W.-K. Tso et al., “Randomized controlled trial of transarterial Lipiodol chemoembolization for unresectable hepatocellular carcinoma,” Hepatology, vol. 35, no. 5, pp. 1164–1171, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. J. M. Llovet, M. I. Real, X. Montaña et al., “Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial,” Lancet, vol. 359, no. 9319, pp. 1734–1739, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Pichon, G. Bekes, F. Deschamps, and S. B. Solomon, “Development and preliminary evaluation of software for planning selective liver embolizations from three-dimensional rotational fluoroscopy imaging,” International Journal of Computer Assisted Radiology and Surgery, vol. 3, no. 5, pp. 405–412, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Lencioni and J. M. Llovet, “Modified recist (mRECIST) assessment for hepatocellular carcinoma,” Seminars in Liver Disease, vol. 30, no. 1, pp. 52–60, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. S. B. Solomon, R. Thornton, F. Deschamps et al., “A treatment planning system for transcatheter hepatic therapies: pilot study,” Journal of Interventional Oncology, vol. 1, no. 1, pp. 12–18, 2008. View at Google Scholar
  6. F. Deschamps, S. B. Solomon, R. H. Thornton et al., “Computed analysis of three-dimensional cone-beam computed tomography angiography for determination of tumor-feeding vessels during chemoembolization of liver tumor: a pilot study,” CardioVascular and Interventional Radiology, vol. 33, no. 6, pp. 1235–1242, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Iwazawa, S. Ohue, N. Hashimoto, O. Muramoto, and T. Mitani, “Clinical utility and limitations of tumor-feeder detection software for liver cancer embolization,” European Journal of Radiology, 2013. View at Publisher · View at Google Scholar
  8. S. Hirota, N. Nakao, S. Yamamoto et al., “Cone-beam CT with flat-panel-detector digital angiography system: early experience in abdominal interventional procedures,” CardioVascular and Interventional Radiology, vol. 29, no. 6, pp. 1034–1038, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Kakeda, Y. Korogi, Y. Hatakeyama et al., “The usefulness of three-dimensional angiography with a flat panel detector of direct conversion type in a transcatheter arterial chemoembolization procedure for hepatocellular carcinoma: initial experience,” CardioVascular and Interventional Radiology, vol. 31, no. 2, pp. 281–288, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Iwazawa, S. Ohue, T. Mitani et al., “Identifying feeding arteries during TACE of hepatic tumors: comparison of C-Arm CT and digital subtraction angiography,” American Journal of Roentgenology, vol. 192, no. 4, pp. 1057–1063, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Miyayama, M. Yamashiro, M. Okuda et al., “Usefulness of cone-beam computed tomography during ultraselective transcatheter arterial chemoembolization for small hepatocellular carcinomas that cannot be demonstrated on angiography,” CardioVascular and Interventional Radiology, vol. 32, no. 2, pp. 255–264, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Iwazawa, S. Ohue, N. Hashimoto, H. Abe, M. Hamuro, and T. Mitani, “Detection of hepatocellular carcinoma: comparison of angiographic C-arm CT and MDCT,” American Journal of Roentgenology, vol. 195, no. 4, pp. 882–887, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Higashihara, K. Osuga, H. Onishi et al., “Diagnostic accuracy of C-arm CT during selective transcatheter angiography for hepatocellular carcinoma: comparison with intravenous contrast-enhanced, biphasic, dynamic MDCT,” European Radiology, vol. 22, no. 4, pp. 879–872, 2012. View at Publisher · View at Google Scholar · View at Scopus