Table of Contents Author Guidelines Submit a Manuscript
Sarcoma
Volume 2, Issue 2, Pages 77-87
http://dx.doi.org/10.1080/13577149878037

Molecular Alterations in Pediatric Sarcomas: Potential Targets for Immunotherapy

1Molecular Immunogenetics and Vaccine Research Section, Metabolism Branch, National Cancer Institute, National Institutes of Health, Bethesda 20892, MD, USA
2Molecular Oncology Section, Pediatric Branch, Division of Clinical Sciences, National Cancer Institute, National Institutes of Health, Building 10, Room 13N240, 9000 Rockville Pike, Bethesda 20892–1928, MD, USA

Copyright © 1998 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Purpose/results/discussion. Recurrent chromosomal translocations are common features of many human malignancies. While such translocations often serve as diagnostic markers, molecular analysis of these breakpoint regions and the characterization of the affected genes is leading to a greater understanding of the causal role such translocations play in malignant transformation. A common theme that is emerging from the study of tumor-associated translocations is the generation of chimeric genes that, when expressed, frequently retain many of the functional properties of the wild-type genes from which they originated. Sarcomas, in particular, harbor chimeric genes that are often derived from transcription factors, suggesting that the resulting chimeric transcription factors contribute to tumorigenesis. The tumor-specific expression of the fusion proteins make them likely candidates for tumor-associated antigens (TAA) and are thus of interest in the development of new therapies. The focus of this review will be on the translocation events associated with Ewing's sarcomas/PNETs (ES), alveolar rhabdomyosarcoma (ARMS), malignant melanoma of soft parts (MMSP) (clear cell sarcoma), desmoplastic small round cell tumor (DSRCT), synovial sarcoma (SS), and liposarcoma (LS), and the potential for targeting the resulting chimeric proteins in novel immunotherapies.