Table of Contents Author Guidelines Submit a Manuscript
Sarcoma
Volume 2011 (2011), Article ID 325238, 12 pages
http://dx.doi.org/10.1155/2011/325238
Review Article

Defective Osteogenic Differentiation in the Development of Osteosarcoma

1Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL 60637, USA
2Stem Cell Biology and Therapy Laboratory, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China
3Key Laboratory of Diagnostic Medicine, Chinese Ministry of Education and Affiliated Hospitals, Chongqing Medical University, Chongqing 400016, China
4School of Bioengineering, Chongqing University, Chongqing 400044, China
5Department of Geriatrics, Xinhua Hospital, Shanghai Jiaotong University, Shanghai 200092, China
6Department of Cell Biology, Third Military Medical University, Chongqing 400030, China

Received 20 September 2010; Revised 19 December 2010; Accepted 20 December 2010

Academic Editor: H. Kovar

Copyright © 2011 Eric R. Wagner et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Tang, W. X. Song, J. Luo, R. C. Haydon, and T. C. He, “Osteosarcoma development and stem cell differentiation,” Clinical Orthopaedics and Related Research, vol. 466, no. 9, pp. 2114–2130, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Marina, M. Gebhardt, L. Teot, and R. Gorlick, “Biology and therapeutic advances for pediatric osteosarcoma,” Oncologist, vol. 9, no. 4, pp. 422–441, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. P. A. Meyers and R. Gorlick, “Osteosarcoma,” Pediatric Clinics of North America, vol. 44, no. 4, pp. 973–989, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. S. C. Kaste, C. B. Pratt, A. M. Cain, D. J. Jones-Wallace, and B. N. Rao, “Metastases detected at the time of diagnosis of primary pediatric extremity osteosarcoma at diagnosis: imaging features,” Cancer, vol. 86, no. 8, pp. 1602–1608, 1999. View at Google Scholar · View at Scopus
  5. R. Gorlick, P. Anderson, I. Andrulis et al., “Biology of childhood osteogenic sarcoma and potential targets for therapeutic development: meeting summary,” Clinical Cancer Research, vol. 9, no. 15, pp. 5442–5453, 2003. View at Google Scholar · View at Scopus
  6. B. Kempf-Bielack, S. S. Bielack, H. Jürgens et al., “Osteosarcoma relapse after combined modality therapy: an analysis of unselected patients in the Cooperative Osteosarcoma Study Group (COSS),” Journal of Clinical Oncology, vol. 23, no. 3, pp. 559–568, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. V. O. Lewis, “What's new in musculoskeletal oncology,” Journal of Bone and Joint Surgery A, vol. 89, no. 6, pp. 1399–1407, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. P. R. Brock, S. C. Bellman, E. C. Yeomans, C. R. Pinkerton, and J. Pritchard, “Cisplatin ototoxicity in children: a practical grading system,” Medical and Pediatric Oncology, vol. 19, no. 4, pp. 295–300, 1991. View at Google Scholar · View at Scopus
  9. F. A. Hayes, A. A. Green, N. Senzer, and C. B. Pratt, “Tetany: a complication of cis-dichlorodiammineplatinum(II) therapy,” Cancer Treatment Reports, vol. 63, no. 4, pp. 547–548, 1979. View at Google Scholar · View at Scopus
  10. A. M. Goorin, K. M. Borow, and A. Goldman, “Congestive heart failure due to adriamycin cardiotoxicity: its natural history in children,” Cancer, vol. 47, no. 12, pp. 2810–2816, 1981. View at Google Scholar · View at Scopus
  11. A. M. Goorin, A. R. Chauvenet, A. R. Perez-Atayde, J. Cruz, R. McKone, and S. E. Lipshultz, “Initial congestive heart failure, six to ten years after doxorubicin chemotherapy for childhood cancer,” Journal of Pediatrics, vol. 116, no. 1, pp. 144–147, 1990. View at Publisher · View at Google Scholar · View at Scopus
  12. J. P. Krischer, S. Epstein, D. D. Cuthbertson, A. M. Goorin, M. L. Epstein, and S. E. Lipshultz, “Clinical cardiotoxicity following anthracycline treatment for childhood cancer: the Pediatric Oncology Group experience,” Journal of Clinical Oncology, vol. 15, no. 4, pp. 1544–1552, 1997. View at Google Scholar · View at Scopus
  13. S. E. Lipshultz, S. R. Lipsitz, S. M. Mone et al., “Female sex and higher drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer,” The New England Journal of Medicine, vol. 332, no. 26, pp. 1738–1743, 1995. View at Publisher · View at Google Scholar · View at Scopus
  14. A. A. Sandberg and J. A. Bridge, “Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: osteosarcoma and related tumors,” Cancer Genetics and Cytogenetics, vol. 145, no. 1, pp. 1–30, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. R. C. Haydon, H. H. Luu, and T. C. He, “Osteosarcoma and osteoblastic differentiation: a new perspective on oncogenesis,” Clinical Orthopaedics and Related Research, no. 454, pp. 237–246, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. J. R. Nevins, G. Leone, J. DeGregori, and L. Jakoi, “Role of the Rb/E2F pathway in cell growth control,” Journal of Cellular Physiology, vol. 173, no. 2, pp. 233–236, 1997. View at Google Scholar · View at Scopus
  17. J. Alonso, P. García-Miguel, J. Abelairas, M. Mendiola, and Á. Pestaña, “A microsatellite fluorescent method for linkage analysis in familial retinoblastoma and deletion detection at the RB1 locus in retinoblastoma and osteosarcoma,” Diagnostic Molecular Pathology, vol. 10, no. 1, pp. 9–14, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Araki, A. Uchida, T. Kimura et al., “Involvement of the retinoblastoma gene in primary osteosarcomas and other bone and soft-tissue tumors,” Clinical Orthopaedics and Related Research, no. 270, pp. 271–277, 1991. View at Google Scholar · View at Scopus
  19. D. A. Belchis, C. A. Meece, F. A. Benko, P. K. Rogan, R. A. Williams, and C. D. Gocke, “Loss of heterozygosity and microsatellite instability at the retinoblastoma locus in osteosarcomas,” Diagnostic Molecular Pathology, vol. 5, no. 3, pp. 214–219, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. M. S. Benassi, L. Molendini, G. Gamberi et al., “Alteration of prb/p16/cdk4 regulation in human osteosarcoma,” International Journal of Cancer, vol. 84, no. 5, pp. 489–493, 1999. View at Google Scholar · View at Scopus
  21. D. E. Quelle, F. Zindy, R. A. Ashmun, and C. J. Sherr, “Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest,” Cell, vol. 83, no. 6, pp. 993–1000, 1995. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Kansara and D. M. Thomas, “Molecular pathogenesis of osteosarcoma,” DNA and Cell Biology, vol. 26, no. 1, pp. 1–18, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Chandar, B. Billig, J. McMaster, and J. Novak, “Inactivation of p53 gene in human and murine osteosarcoma cells,” British Journal of Cancer, vol. 65, no. 2, pp. 208–214, 1992. View at Google Scholar · View at Scopus
  24. A. J. Levine, “p53, the cellular gatekeeper for growth and division,” Cell, vol. 88, no. 3, pp. 323–331, 1997. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Hung and R. Anderson, “p53: functions, mutations and sarcomas,” Acta Orthopaedica Scandinavica, Supplement, vol. 68, no. 273, pp. 68–73, 1997. View at Google Scholar · View at Scopus
  26. W. S. El-Deiry, “Regulation of p53 downstream genes,” Seminars in Cancer Biology, vol. 8, no. 5, pp. 345–357, 1997. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Hansen and M. Oren, “p53; from inductive signal to cellular effect,” Current Opinion in Genetics and Development, vol. 7, no. 1, pp. 46–51, 1997. View at Publisher · View at Google Scholar · View at Scopus
  28. F. P. Li, J. F. Fraumeni, J. J. Mulvihill et al., “A cancer family syndrome in twenty-four kindreds,” Cancer Research, vol. 48, no. 18, pp. 5358–5362, 1988. View at Google Scholar · View at Scopus
  29. D. Malkin, K. W. Jolly, N. Barbier et al., “Germline mutations of the p53 tumor-suppressor gene in children and young adults with second malignant neoplasms,” The New England Journal of Medicine, vol. 326, no. 20, pp. 1309–1315, 1992. View at Google Scholar · View at Scopus
  30. S. Srivastava, Z. Zou, K. Pirollo, W. Blattner, and E. H. Chang, “Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome,” Nature, vol. 348, no. 6303, pp. 747–749, 1990. View at Publisher · View at Google Scholar · View at Scopus
  31. M. D. Cole and S. B. McMahon, “The Myc oncoprotein: a critical evaluation of transactivation and target gene regulation,” Oncogene, vol. 18, no. 19, pp. 2916–2924, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. C. E. Nesbit, J. M. Tersak, and E. V. Prochownik, “MYC oncogenes and human neoplastic disease,” Oncogene, vol. 18, no. 19, pp. 3004–3016, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Barrios, J. S. Castresana, and A. Kreicbergs, “Clinicopathologic correlations and short-term prognosis in musculoskeletal sarcoma with c-myc oncogene amplification,” American Journal of Clinical Oncology, vol. 17, no. 3, pp. 273–276, 1994. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Barrios, J. S. Castresana, J. Ruiz, and A. Kreicbergs, “Amplification of c-myc oncogene and absence of c-Ha-ras point mutation in human bone sarcoma,” Journal of Orthopaedic Research, vol. 11, no. 4, pp. 556–563, 1993. View at Google Scholar · View at Scopus
  35. F. Pompetti, P. Rizzo, R. M. Simon et al., “Oncogene alterations in primary, recurrent, and metastatic human bone tumors,” Journal of Cellular Biochemistry, vol. 63, no. 1, pp. 37–50, 1996. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Gamberi, M. S. Benassi, T. Bohling et al., “C-myc and c-fos in human osteosarcoma: prognostic value of mRNA and protein expression,” Oncology, vol. 55, no. 6, pp. 556–563, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Shimizu, T. Ishikawa, E. Sugihara et al., “C-MYC overexpression with loss of Ink4a/Arf transforms bone marrow stromal cells into osteosarcoma accompanied by loss of adipogenesis,” Oncogene, vol. 29, no. 42, pp. 5687–5699, 2010. View at Publisher · View at Google Scholar
  38. F. Lonardo, T. Ueda, A. G. Huvos, J. Healey, and M. Ladanyi, “p53 and MDM2 alterations in osteosarcomas: correlation with clinicopathologic features and proliferative rate,” Cancer, vol. 79, no. 8, pp. 1541–1547, 1997. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Momand, D. Jung, S. Wilczynski, and J. Niland, “The MDM2 gene amplification database,” Nucleic Acids Research, vol. 26, no. 15, pp. 3453–3459, 1998. View at Publisher · View at Google Scholar · View at Scopus
  40. J. D. Oliner, K. W. Kinzler, P. S. Meltzer, D. L. George, and B. Vogelstein, “Amplification of a gene encoding a p53-associated protein in human sarcomas,” Nature, vol. 358, no. 6381, pp. 80–83, 1992. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Ragazzini, G. Gamberi, M. S. Benassi et al., “Analysis of SAS gene and CDK4 and MDM2 proteins in low-grade osteosarcoma,” Cancer Detection and Prevention, vol. 23, no. 2, pp. 129–136, 1999. View at Publisher · View at Google Scholar · View at Scopus
  42. J. D. K. McNairm, T. A. Damron, S. K. Landas, J. L. Ambrose, and A. E. Shrimpton, “Inheritance of osteosarcoma and Paget's disease of bone: a familial loss of heterozygosity study,” Journal of Molecular Diagnostics, vol. 3, no. 4, pp. 171–177, 2001. View at Google Scholar · View at Scopus
  43. L. L. Wang, M. L. Levy, R. A. Lewis et al., “Clinical manifestations in a cohort of 41 Rothmund-Thomson syndrome patients,” American Journal of Medical Genetics, vol. 102, no. 1, pp. 11–17, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. A. I. McClatchey, “Neurofibromatosis type II: mouse models reveal broad roles in tumorigenesis and metastasis,” Molecular Medicine Today, vol. 6, no. 6, pp. 252–253, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. A. I. McClatchey and M. Giovannini, “Membrane organization and tumorigenesis—the NF2 tumor suppressor, Merlin,” Genes and Development, vol. 19, no. 19, pp. 2265–2277, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. A. I. McClatchey, I. Saotome, K. Mercer et al., “Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors,” Genes and Development, vol. 12, no. 8, pp. 1121–1133, 1998. View at Google Scholar · View at Scopus
  47. J. Luo et al., “Gene therapy for bone regeneration,” Current Gene Therapy, vol. 5, no. 2, pp. 167–179, 2005. View at Google Scholar
  48. J. Massagué, “TGF-β signal transduction,” Annual Review of Biochemistry, vol. 67, pp. 753–791, 1998. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Massagué and YE. G. Chen, “Controlling TGF-β signaling,” Genes and Development, vol. 14, no. 6, pp. 627–644, 2000. View at Google Scholar · View at Scopus
  50. J. Massagué and D. Wotton, “Transcriptional control by the TGF-β/Smad signaling system,” EMBO Journal, vol. 19, no. 8, pp. 1745–1754, 2000. View at Google Scholar · View at Scopus
  51. P. Kloen, M. C. Gebhardt, A. Perez-Atayde et al., “Expression of transforming growth factor-β (TGF-β) isoforms in osteosarcomas: TGF-β3 is related to disease progression,” Cancer, vol. 80, no. 12, pp. 2230–2239, 1997. View at Publisher · View at Google Scholar · View at Scopus
  52. A. O. M. Wilkie, S. J. Patey, S. H. Kan, A. M. W. Van Den Ouweland, and B. C. J. Hamel, “FGFs, their receptors, and human limb malformations: clinical and molecular correlations,” American Journal of Medical Genetics, vol. 112, no. 3, pp. 266–278, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Ferrari, M. S. Benassi, F. Ponticelli et al., “Role of MMP-9 and its tissue inhibitor TIMP-1 in human osteosarcoma: findings in 42 patients followed for 1-16 years,” Acta Orthopaedica Scandinavica, vol. 75, no. 4, pp. 487–491, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Scotlandi, N. Baldini, M. Oliviero et al., “Expression of met/hepatocyte growth factor receptor gene and malignant behavior of musculoskeletal tumors,” American Journal of Pathology, vol. 149, no. 4, pp. 1209–1219, 1996. View at Google Scholar · View at Scopus
  55. B. C. He, L. Chen, G. W. Zuo et al., “Synergistic antitumor effect of the activated PPARγ and retinoid receptors on human osteosarcoma,” Clinical Cancer Research, vol. 16, no. 8, pp. 2235–2245, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. J. E. Aubin, “Regulation of osteoblast formation and function,” Reviews in Endocrine and Metabolic Disorders, vol. 2, no. 1, pp. 81–94, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. H. H. Luu, W. X. Song, X. Luo et al., “Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells,” Journal of Orthopaedic Research, vol. 25, no. 5, pp. 665–677, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. Z. L. Deng, K. A. Sharff, NI. Tang et al., “Regulation of osteogenic differentiation during skeletal development,” Frontiers in Bioscience, vol. 13, no. 6, pp. 2001–2021, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. E. R. Wagner et al., “Therapeutic implications of PPARgamma in human osteosarcoma,” PPAR Research, vol. 2010, Article ID 956427, 2010. View at Google Scholar
  60. D. A. Glass and G. Karsenty, “Minireview: in vivo analysis of Wnt signaling in bone,” Endocrinology, vol. 148, no. 6, pp. 2630–2634, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. J. Luo, J. Chen, Z. L. Deng et al., “Wnt signaling and human diseases: what are the therapeutic implications?” Laboratory Investigation, vol. 87, no. 2, pp. 97–103, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. T. Reya and H. Clevers, “Wnt signalling in stem cells and cancer,” Nature, vol. 434, no. 7035, pp. 843–850, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. T. Reya, S. J. Morrison, M. F. Clarke, and I. L. Weissman, “Stem cells, cancer, and cancer stem cells,” Nature, vol. 414, no. 6859, pp. 105–111, 2001. View at Publisher · View at Google Scholar · View at Scopus
  64. X. Luo, J. Chen, W. X. Song et al., “Osteogenic BMPs promote tumor growth of human osteosarcomas that harbor differentiation defects,” Laboratory Investigation, vol. 88, no. 12, pp. 1264–1277, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. C. M. Kolf, E. Cho, and R. S. Tuan, “Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation,” Arthritis Research and Therapy, vol. 9, no. 1, article 204, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. R. L. Perry and M. A. Rudnick, “Molecular mechanisms regulating myogenic determination and differentiation,” Frontiers in Bioscience, vol. 5, pp. D750–767, 2000. View at Google Scholar · View at Scopus
  67. B. L. Black and E. N. Olson, “Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins,” Annual Review of Cell and Developmental Biology, vol. 14, pp. 167–196, 1998. View at Publisher · View at Google Scholar · View at Scopus
  68. T. C. Otto and M. D. Lane, “Adipose development: from stem cell to adipocyte,” Critical Reviews in Biochemistry and Molecular Biology, vol. 40, no. 4, pp. 229–242, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. P. A. Zuk, M. Zhu, H. Mizuno et al., “Multilineage cells from human adipose tissue: implications for cell-based therapies,” Tissue Engineering, vol. 7, no. 2, pp. 211–228, 2001. View at Publisher · View at Google Scholar · View at Scopus
  70. Y. Shi and J. Massagué, “Mechanisms of TGF-β signaling from cell membrane to the nucleus,” Cell, vol. 113, no. 6, pp. 685–700, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. L. Attisano and J. L. Wrana, “Signal transduction by the TGF-β superfamily,” Science, vol. 296, no. 5573, pp. 1646–1647, 2002. View at Publisher · View at Google Scholar · View at Scopus
  72. A. H. Reddi, “Role of morphogenetic proteins in skeletal tissue engineering and regeneration,” Nature Biotechnology, vol. 16, no. 3, pp. 247–252, 1998. View at Publisher · View at Google Scholar · View at Scopus
  73. P. Ducy and G. Karsenty, “The family of bone morphogenetic proteins,” Kidney International, vol. 57, no. 6, pp. 2207–2214, 2000. View at Publisher · View at Google Scholar · View at Scopus
  74. Q. Kang, W. X. Song, Q. Luo et al., “A Comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells,” Stem Cells and Development, vol. 18, no. 4, pp. 545–558, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. Y. Peng, Q. Kang, Q. Luo et al., “Inhibitor of DNA binding/differentiation helix-loop-helix proteins mediate bone morphogenetic protein-induced osteoblast differentiation of mesenchymal stem cells,” Journal of Biological Chemistry, vol. 279, no. 31, pp. 32941–32949, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. Q. Luo, Q. Kang, W. Si et al., “Connective tissue growth factor (CTGF) is regulated by Wnt and bone morphogenetic proteins signaling in osteoblast differentiation of mesenchymal stem cells,” Journal of Biological Chemistry, vol. 279, no. 53, pp. 55958–55968, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. W. Si, Q. Kang, H. H. Luu et al., “CCN1/Cyr61 is regulated by the canonical Wnt signal and plays an important role in Wnt3A-induced osteoblast differentiation of mesenchymal stem cells,” Molecular and Cellular Biology, vol. 26, no. 8, pp. 2955–2964, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. T. L. Chen, W. J. Shen, and F. B. Kraemer, “Human BMP-7/OP-1 induces the growth and differentiation of adipocytes and osteoblasts in bone marrow stromal cell cultures,” Journal of Cellular Biochemistry, vol. 82, no. 2, pp. 187–199, 2001. View at Publisher · View at Google Scholar · View at Scopus
  79. V. Sottile and K. Seuwen, “Bone morphogenetic protein-2 stimulates adipogenic differentiation of mesenchymal precursor cells in synergy with BRL 49653 (rosiglitazone),” FEBS Letters, vol. 475, no. 3, pp. 201–204, 2000. View at Publisher · View at Google Scholar · View at Scopus
  80. R. R. Bowers, J. W. Kim, T. C. Otto, and M. D. Lane, “Stable stem cell commitment to the adipocyte lineage by inhibition of DNA methylation: role of the BMP-4 gene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 35, pp. 13022–13027, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. E. A. Wang, D. I. Israel, S. Kelly, and D. P. Luxenberg, “Bone morphogenetic protein-2 causes commitment and differentiation in C3H10T1/2 and 3T3 cells,” Growth Factors, vol. 9, no. 1, pp. 57–71, 1993. View at Google Scholar · View at Scopus
  82. M. Mie, H. Ohgushi, Y. Yanagida, T. Haruyama, E. Kobatake, and M. Aizawa, “Osteogenesis coordinated in C3H10T1/2 cells by adipogenesis-dependent BMP-2 expression system,” Tissue Engineering, vol. 6, no. 1, pp. 9–18, 2000. View at Publisher · View at Google Scholar · View at Scopus
  83. M. Ahrens, T. Ankenbauer, D. Schroder, A. Hollnagel, H. Mayer, and G. Gross, “Expression of human bone morphogenetic proteins-2 or -4 in murine mesenchymal progenitor C3H10T 1/2 cells induces differentiation into distinct mesenchymal cell lineages,” DNA and Cell Biology, vol. 12, no. 10, pp. 871–880, 1993. View at Google Scholar · View at Scopus
  84. T. C. He, “Distinct osteogenic activity of BMPs and their orthopaedic applications,” Journal of Musculoskeletal Neuronal Interactions, vol. 5, no. 4, pp. 363–366, 2005. View at Google Scholar · View at Scopus
  85. Y. Peng, Q. Kang, H. Cheng et al., “Transcriptional Characterization of Bone Morphogenetic Proteins (BMPs)-Mediated Osteogenic Signaling,” Journal of Cellular Biochemistry, vol. 90, no. 6, pp. 1149–1165, 2003. View at Publisher · View at Google Scholar · View at Scopus
  86. A. Yamaguchi, T. Komori, and T. Suda, “Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1,” Endocrine Reviews, vol. 21, no. 4, pp. 393–411, 2000. View at Publisher · View at Google Scholar · View at Scopus
  87. J. B. Lian, G. S. Stein, A. Javed et al., “Networks and hubs for the transcriptional control of osteoblastogenesis,” Reviews in Endocrine and Metabolic Disorders, vol. 7, no. 1-2, pp. 1–16, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. C. Giaginis, A. Tsantili-Kakoulidou, and S. Theocharis, “Peroxisome proliferator-activated receptors (PPARs) in the control of bone metabolism,” Fundamental and Clinical Pharmacology, vol. 21, no. 3, pp. 231–244, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. T. Akune, S. Ohba, S. Kamekura et al., “PPARγ insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors,” Journal of Clinical Investigation, vol. 113, no. 6, pp. 846–855, 2004. View at Publisher · View at Google Scholar · View at Scopus
  90. G. Karsenty, “Role of Cbfa1 in osteoblast differentiation and function,” Seminars in Cell and Developmental Biology, vol. 11, no. 5, pp. 343–346, 2000. View at Publisher · View at Google Scholar · View at Scopus
  91. P. Ducy, M. Starbuck, M. Priemel et al., “A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development,” Genes and Development, vol. 13, no. 8, pp. 1025–1036, 1999. View at Google Scholar · View at Scopus
  92. T. Komori, “Regulation of osteoblast differentiation by transcription factors,” Journal of Cellular Biochemistry, vol. 99, no. 5, pp. 1233–1239, 2006. View at Publisher · View at Google Scholar · View at Scopus
  93. T. Komori, H. Yagi, S. Nomura et al., “Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts,” Cell, vol. 89, no. 5, pp. 755–764, 1997. View at Google Scholar · View at Scopus
  94. M. Inada, T. Yasui, S. Nomura et al., “Maturational disturbance of chondrocytes in Cbfa1-deficient mice,” Developmental Dynamics, vol. 214, no. 4, pp. 279–290, 1999. View at Google Scholar · View at Scopus
  95. T. Komori, “Runx2, a multifunctional transcription factor in skeletal development,” Journal of Cellular Biochemistry, vol. 87, no. 1, pp. 1–8, 2002. View at Publisher · View at Google Scholar · View at Scopus
  96. J. B. Lian, J. L. Stein, G. S. Stein et al., “Runx2/Cbfa1 functions: diverse regulation of gene transcription by chromatin remodeling and co-regulatory protein interactions,” Connective Tissue Research, vol. 44, supplement 1, pp. 141–148, 2003. View at Google Scholar · View at Scopus
  97. J. J. Westendorf, “Transcriptional co-repressors of Runx2,” Journal of Cellular Biochemistry, vol. 98, no. 1, pp. 54–64, 2006. View at Publisher · View at Google Scholar · View at Scopus
  98. D. M. Thomas, S. A. Johnson, N. A. Sims et al., “Terminal osteoblast differentiation, mediated by runx2 and p27 , is disrupted in osteosarcoma,” Journal of Cell Biology, vol. 167, no. 5, pp. 925–934, 2004. View at Publisher · View at Google Scholar · View at Scopus
  99. C. Bergwitz, T. Wendlandt, A. Kispert, and G. Brabant, “Wnts differentially regulate colony growth and differentiation of chondrogenic rat calvaria cells,” Biochimica et Biophysica Acta, vol. 1538, no. 2-3, pp. 129–140, 2001. View at Publisher · View at Google Scholar · View at Scopus
  100. L. Fischer, G. Boland, and R. S. Tuan, “Wnt signaling during BMP-2 stimulation of mesenchymal chondrogenesis,” Journal of Cellular Biochemistry, vol. 84, no. 4, pp. 816–831, 2002. View at Publisher · View at Google Scholar · View at Scopus
  101. J. Wang and A. Wynshaw-Boris, “The canonical Wnt pathway in early mammalian embryogenesis and stem cell maintenance/differentiation,” Current Opinion in Genetics and Development, vol. 14, no. 5, pp. 533–539, 2004. View at Publisher · View at Google Scholar · View at Scopus
  102. C. A. Gregory, W. G. Gunn, E. Reyes et al., “How Wnt signaling affects bone repair by mesenchymal stem cells from the bone marrow,” Annals of the New York Academy of Sciences, vol. 1049, pp. 97–106, 2005. View at Publisher · View at Google Scholar · View at Scopus
  103. B. J. Gavin, J. A. McMahon, and A. P. McMahon, “Expression of multiple novel Wnt-1/int-1-related genes during fetal and adult mouse development,” Genes and Development, vol. 4, no. 12 B, pp. 2319–2332, 1990. View at Google Scholar · View at Scopus
  104. M. Kengaku, J. Capdevila, C. Rodriguez-Esteban et al., “Distinct WNT pathways regulating AER formation and dorsoventral polarity in the chick limb bud,” Science, vol. 280, no. 5367, pp. 1274–1277, 1998. View at Google Scholar · View at Scopus
  105. V. Krishnan, H. U. Bryant, and O. A. MacDougald, “Regulation of bone mass by Wnt signaling,” Journal of Clinical Investigation, vol. 116, no. 5, pp. 1202–1209, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. S. J. Rodda and A. P. McMahon, “Distinct roles for Hedgehog and caronical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors,” Development, vol. 133, no. 16, pp. 3231–3244, 2006. View at Publisher · View at Google Scholar
  107. E. Tian, F. Zhan, R. Walker et al., “The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma,” The New England Journal of Medicine, vol. 349, no. 26, pp. 2483–2494, 2003. View at Publisher · View at Google Scholar · View at Scopus
  108. R. C. Haydon, A. Deyrup, A. Ishikawa et al., “Cytoplasmic and/or nuclear accumulation of the β-catenin protein is a frequent event in human osteosarcoma,” International Journal of Cancer, vol. 102, no. 4, pp. 338–342, 2002. View at Publisher · View at Google Scholar
  109. T. P. Hill, D. Später, M. M. Taketo, W. Birchmeier, and C. Hartmann, “Canonical Wnt/β-catenin signaling prevents osteoblasts from differentiating into chondrocytes,” Developmental Cell, vol. 8, no. 5, pp. 727–738, 2005. View at Publisher · View at Google Scholar · View at Scopus
  110. J. Taipale and P. A. Beachy, “The Hedgehog and Wnt signalling pathways in cancer,” Nature, vol. 411, no. 6835, pp. 349–354, 2001. View at Publisher · View at Google Scholar · View at Scopus
  111. B. Varnum-Finney, L. Xu, C. Brashem-Stein et al., “Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling,” Nature Medicine, vol. 6, no. 11, pp. 1278–1281, 2000. View at Publisher · View at Google Scholar · View at Scopus
  112. F. N. Karanu, B. Murdoch, L. Gallacher et al., “The Notch ligand Jagged-1 represents a novel growth factor of human hematopoietic stem cells,” Journal of Experimental Medicine, vol. 192, no. 9, pp. 1365–1372, 2000. View at Publisher · View at Google Scholar · View at Scopus
  113. P. Hill, K. Götz, and U. Rüther, “A SHH-independent regulation of Gli3 is a significant determinant of anteroposterior patterning of the limb bud,” Developmental Biology, vol. 328, no. 2, pp. 506–516, 2009. View at Publisher · View at Google Scholar · View at Scopus
  114. J. Warzecha, S. Göttig, K. U. Chow et al., “Inhibition of osteosarcoma cell proliferation by the hedgehog-inhibitor cyclopamine,” Journal of Chemotherapy, vol. 19, no. 5, pp. 554–561, 2007. View at Google Scholar · View at Scopus
  115. U. Gat, R. DasGupta, L. Degenstein, and E. Fuchs, “De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated β-catenin in skin,” Cell, vol. 95, no. 5, pp. 605–614, 1998. View at Google Scholar · View at Scopus
  116. S. Sell and G. B. Pierce, “Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers,” Laboratory Investigation, vol. 70, no. 1, pp. 6–22, 1994. View at Google Scholar · View at Scopus
  117. C. L. Sawyers, C. T. Denny, and O. N. Witte, “Leukemia and the disruption of normal hematopoiesis,” Cell, vol. 64, no. 2, pp. 337–350, 1991. View at Google Scholar · View at Scopus
  118. S. Sell, “Stem cell origin of cancer and differentiation therapy,” Critical Reviews in Oncology/Hematology, vol. 51, no. 1, pp. 1–28, 2004. View at Publisher · View at Google Scholar · View at Scopus
  119. J. L. Stanford, M. Szklo, and L. A. Brinton, “Estrogen receptors and breast cancer,” Epidemiologic reviews, vol. 8, pp. 42–59, 1986. View at Google Scholar · View at Scopus
  120. W. J. Gradishar, “Adjuvant endocrine therapy for early breast cancer: the story so far,” Cancer Investigation, vol. 28, no. 4, pp. 433–442, 2010. View at Publisher · View at Google Scholar · View at Scopus
  121. R. G. Mehta, E. Williamson, M. K. Patel, and H. P. Koeffler, “A ligand of peroxisome proliferator-activated receptor γ, retinoids, and prevention of preneoplastic mammary lesions,” Journal of the National Cancer Institute, vol. 92, no. 5, pp. 418–423, 2000. View at Google Scholar
  122. E. Elstner, C. Müller, K. Koshizuka et al., “Ligands for peroxisome proliferator-activated receptory and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 15, pp. 8806–8811, 1998. View at Google Scholar · View at Scopus
  123. E. Mueller, P. Sarraf, P. Tontonoz et al., “Terminal differentiation of human breast cancer through PPARγ,” Molecular Cell, vol. 1, no. 3, pp. 465–470, 1998. View at Google Scholar
  124. P. Tontonoz, E. Hu, and B. M. Spiegelman, “Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor,” Cell, vol. 79, no. 7, pp. 1147–1156, 1994. View at Google Scholar · View at Scopus
  125. P. Tontonoz, S. Singer, B. M. Forman et al., “Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor γ and the retinoid X receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 1, pp. 237–241, 1997. View at Publisher · View at Google Scholar
  126. T. Kubota, K. Koshizuka, E. A. Williamson et al., “Ligand for peroxisome proliferator-activated receptor γ (Troglitazone) has potent antitumor effect against human prostate cancer both in vitro and in vivo,” Cancer Research, vol. 58, no. 15, pp. 3344–3352, 1998. View at Google Scholar
  127. G. Jenster, “The role of the androgen receptor in the development and progression of prostate cancer,” Seminars in Oncology, vol. 26, no. 4, pp. 407–421, 1999. View at Google Scholar · View at Scopus
  128. M. Housset, M. T. Daniel, and L. Degos, “Small doses of ARA-C in the treatment of acute myeloid leukaemia: differentiation of myeloid leukaemia cells?” British Journal of Haematology, vol. 51, no. 1, pp. 125–129, 1982. View at Google Scholar · View at Scopus
  129. Y. Castillero-Trejo, S. Eliazer, L. Xiang, J. A. Richardson, and R. L. Ilaria, “Expression of the EWS/FLI-1 oncogene in murine primary bone-derived cells results in EWS/FLI-1-dependent, Ewing sarcoma-like tumors,” Cancer Research, vol. 65, no. 19, pp. 8698–8705, 2005. View at Publisher · View at Google Scholar · View at Scopus
  130. E. C. Torchia, S. Jaishankar, and S. J. Baker, “Ewing tumor fusion proteins block the differentiation of pluripotent marrow stromal cells,” Cancer Research, vol. 63, no. 13, pp. 3464–3468, 2003. View at Google Scholar · View at Scopus
  131. E. Beauchamp, G. Bulut, O. Abaan et al., “GLI1 is a direct transcriptional target of EWS-FLI1 oncoprotein,” Journal of Biological Chemistry, vol. 284, no. 14, pp. 9074–9082, 2009. View at Publisher · View at Google Scholar · View at Scopus
  132. X. Li, M. E. McGee-Lawrence, M. Decker, and J. J. Westendorf, “The Ewing's sarcoma fusion protein, EWS-FLI, binds Runx2 and blocks osteoblast differentiation,” Journal of Cellular Biochemistry, vol. 111, no. 4, pp. 933–943, 2010. View at Publisher · View at Google Scholar
  133. J. P. Zwerner, J. Joo, K. L. Warner et al., “The EWS/FLI1 oncogenic transcription factor deregulates GLI1,” Oncogene, vol. 27, no. 23, pp. 3282–3291, 2008. View at Publisher · View at Google Scholar · View at Scopus
  134. F. Tirode, K. Laud-Duval, A. Prieur, B. Delorme, P. Charbord, and O. Delattre, “Mesenchymal stem cell features of Ewing tumors,” Cancer Cell, vol. 11, no. 5, pp. 421–429, 2007. View at Publisher · View at Google Scholar · View at Scopus
  135. S. A. Harris, R. J. Enger, B. L. Riggs, and T. C. Spelsberg, “Development and characterization of a conditionally immortalized human fetal osteoblastic cell line,” Journal of Bone and Mineral Research, vol. 10, no. 2, pp. 178–186, 1995. View at Google Scholar · View at Scopus
  136. H. Cheng, W. Jiang, F. M. Phillips et al., “Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs),” Journal of Bone and Joint Surgery A, vol. 85, no. 8, pp. 1544–1552, 2003. View at Google Scholar · View at Scopus
  137. Q. Kang, M. H. Sun, H. Cheng et al., “Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery,” Gene Therapy, vol. 11, no. 17, pp. 1312–1320, 2004. View at Publisher · View at Google Scholar · View at Scopus
  138. L. L. Wang, “Biology of osteogenic sarcoma,” Cancer Journal, vol. 11, no. 4, pp. 294–305, 2005. View at Publisher · View at Google Scholar · View at Scopus
  139. R. E. Scott, “Differentiation, differentiation/gene therapy and cancer,” Pharmacology and Therapeutics, vol. 73, no. 1, pp. 51–65, 1997. View at Publisher · View at Google Scholar · View at Scopus
  140. A. H. Lund and M. Van Lohuizen, “RUNX: a trilogy of cancer genes,” Cancer Cell, vol. 1, no. 3, pp. 213–215, 2002. View at Publisher · View at Google Scholar · View at Scopus
  141. Q. L. Li, K. Ito, C. Sakakura et al., “Causal relationship between the loss of RUNX3 expression and gastric cancer,” Cell, vol. 109, no. 1, pp. 113–124, 2002. View at Publisher · View at Google Scholar · View at Scopus
  142. H. Clevers, “Wnt/β-catenin signaling in development and disease,” Cell, vol. 127, no. 3, pp. 469–480, 2006. View at Publisher · View at Google Scholar · View at Scopus
  143. H. H. Luu, R. Zhang, R. C. Haydon et al., “Wnt/β-catenin signaling pathway as novel cancer drug targets,” Current Cancer Drug Targets, vol. 4, no. 8, pp. 653–671, 2004. View at Publisher · View at Google Scholar · View at Scopus
  144. K. M. Cadigan and R. Nusse, “Wnt signaling: a common theme in animal development,” Genes and Development, vol. 11, no. 24, pp. 3286–3305, 1997. View at Google Scholar · View at Scopus
  145. A. Wodarz and R. Nusse, “Mechanisms of Wnt signaling in development,” Annual Review of Cell and Developmental Biology, vol. 14, pp. 59–88, 1998. View at Publisher · View at Google Scholar · View at Scopus
  146. C. Y. Logan and R. Nusse, “The Wnt signaling pathway in development and disease,” Annual Review of Cell and Developmental Biology, vol. 20, pp. 781–810, 2004. View at Publisher · View at Google Scholar · View at Scopus
  147. G. M. Boland, G. Perkins, D. J. Hall, and R. S. Tuan, “Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells,” Journal of Cellular Biochemistry, vol. 93, no. 6, pp. 1210–1230, 2004. View at Publisher · View at Google Scholar · View at Scopus
  148. K. Iwaya, H. Ogawa, M. Kuroda, M. Izumi, T. Ishida, and K. Mukai, “Cytoplasmic and/or nuclear staining of beta-catenin is associated with lung metastasis,” Clinical and Experimental Metastasis, vol. 20, no. 6, pp. 525–529, 2003. View at Publisher · View at Google Scholar · View at Scopus
  149. B. H. Hoang, T. Kubo, J. H. Healey et al., “Expression of LDL receptor-related protein 5 (LRP5) as a novel marker for disease progression in high-grade osteosarcoma,” International Journal of Cancer, vol. 109, no. 1, pp. 106–111, 2004. View at Publisher · View at Google Scholar · View at Scopus
  150. S. H. Hong, T. Kadosawa, K. Nozaki et al., “In vitro retinoid-induced growth inhibition and morphologic differentiation of canine osteosarcoma cells,” American Journal of Veterinary Research, vol. 61, no. 1, pp. 69–73, 2000. View at Google Scholar · View at Scopus
  151. K. Nozaki, T. Kadosawa, R. Nishimura, M. Mochizuki, K. Takahashi, and N. Sasaki, “1,25-Dihydroxyvitamin D, recombinant human transforming growth factor-β, and recombinant human bone morphogenetic protein-2 induce In Vitro differentiation of canine osteosarcoma cells,” Journal of Veterinary Medical Science, vol. 61, no. 6, pp. 649–656, 1999. View at Google Scholar · View at Scopus
  152. M. Zenmyo, S. Komiya, T. Hamada et al., “Transcriptional activation of p21 by vitamin D or vitamin K leads to differentiation of p53-deficient MG-63 osteosarcoma cells,” Human Pathology, vol. 32, no. 4, pp. 410–416, 2001. View at Publisher · View at Google Scholar · View at Scopus
  153. R. C. Haydon, L. Zhou, T. Feng et al., “Nuclear receptor agonists as potential differentiation therapy agents for human osteosarcoma,” Clinical Cancer Research, vol. 8, no. 5, pp. 1288–1294, 2002. View at Google Scholar · View at Scopus
  154. H. Fukushima, E. Jimi, H. Kajiya, W. Motokawa, and K. Okabe, “Parathyroid-hormone-related protein induces expression of receptor activator of NF-κB ligand in human periodontal ligament cells via a cAMP/protein kinase A-independent pathway,” Journal of Dental Research, vol. 84, no. 4, pp. 329–334, 2005. View at Publisher · View at Google Scholar · View at Scopus
  155. L. Carpio, J. Gladu, D. Goltzman, and S. A. Rabbani, “Induction of osteoblast differentiation indexes by PTHrP in MG-63 cells involves multiple signaling pathways,” American Journal of Physiology, vol. 281, no. 3, pp. E489–E499, 2001. View at Google Scholar · View at Scopus
  156. A. Kallio, T. Guo, E. Lamminen et al., “Estrogen and the selective estrogen receptor modulator (SERM) protection against cell death in estrogen receptor alpha and beta expressing U2OS cells,” Molecular and Cellular Endocrinology, vol. 289, no. 1-2, pp. 38–48, 2008. View at Publisher · View at Google Scholar · View at Scopus
  157. Y. Xiong, G. J. Hannon, H. Zhang, D. Casso, R. Kobayashi, and D. Beach, “p21 is a universal inhibitor of cyclin kinases,” Nature, vol. 366, no. 6456, pp. 701–704, 1993. View at Publisher · View at Google Scholar · View at Scopus
  158. N. C. Partridge, S. R. Bloch, and A. T. Pearman, “Signal transduction pathways mediating parathyroid hormone regulation of osteoblastic gene expression,” Journal of Cellular Biochemistry, vol. 55, no. 3, pp. 321–327, 1994. View at Publisher · View at Google Scholar · View at Scopus
  159. R. Eferl and E. F. Wagner, “AP-1: a double-edged sword in tumorigenesis,” Nature Reviews Cancer, vol. 3, no. 11, pp. 859–868, 2003. View at Google Scholar · View at Scopus
  160. L. K. Mccauley, A. J. Koh, C. A. Beecher, and T. J. Rosol, “Proto-oncogene c-fos is transcriptionally regulated by parathyroid hormone (PTH) and PTH-related protein in a cyclic adenosine monophosphate- dependent manner in osteoblastic cells,” Endocrinology, vol. 138, no. 12, pp. 5427–5433, 1997. View at Google Scholar · View at Scopus
  161. A. E. Grigoriadis, K. Schellander, Z. Q. Wang, and E. F. Wagner, “Osteoblasts are target cells for transformation in c-fos transgenic mice,” Journal of Cell Biology, vol. 122, no. 3, pp. 685–701, 1993. View at Google Scholar · View at Scopus
  162. M. R. Urist, “Bone: formation by autoinduction,” Science, vol. 150, no. 3698, pp. 893–899, 1965. View at Google Scholar · View at Scopus
  163. J. M. Wozney, V. Rosen, A. J. Celeste et al., “Novel regulators of bone formation: molecular clones and activities,” Science, vol. 242, no. 4885, pp. 1528–1534, 1988. View at Google Scholar · View at Scopus