Table of Contents Author Guidelines Submit a Manuscript
Sarcoma
Volume 2011 (2011), Article ID 548151, 13 pages
http://dx.doi.org/10.1155/2011/548151
Review Article

Using Epidemiology and Genomics to Understand Osteosarcoma Etiology

Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 6120 Executive Boulevard, EPS/7018, Rockville, MD 20892, USA

Received 14 September 2010; Revised 9 November 2010; Accepted 19 December 2010

Academic Editor: Stephen Lessnick

Copyright © 2011 Sharon A. Savage and Lisa Mirabello. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Mirabello, R. J. Troisi, and S. A. Savage, “Osteosarcoma incidence and survival rates from 1973 to 2004: data from the surveillance, epidemiology, and end results program,” Cancer, vol. 115, no. 7, pp. 1531–1543, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. L. Mirabello, R. J. Troisi, and S. A. Savage, “Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program,” Cancer, vol. 115, no. 7, pp. 1531–1543, 2009. View at Publisher · View at Google Scholar · View at PubMed
  3. H. D. Dorfman and B. Czerniak, “Bone cancers,” Cancer, vol. 75, no. 1, pp. 203–210, 1995. View at Google Scholar
  4. K. K. Unni, Dahlin's Bone Tumors: General Aspects and Data on 11,087 Cases, Lippincott-Raven, Philadelphia, Pa, USA, 1996.
  5. A. P. Polednak, “Primary bone cancer incidence in black and white residents of New York State,” Cancer, vol. 55, no. 12, pp. 2883–2888, 1985. View at Google Scholar
  6. C. A. Stiller, S. S. Bielack, G. Jundt, and E. Steliarova-Foucher, “Bone tumours in European children and adolescents, 1978–1997. Report from the Automated Childhood Cancer Information System project,” European Journal of Cancer, vol. 42, no. 13, pp. 2124–2135, 2006. View at Publisher · View at Google Scholar · View at PubMed
  7. S. S. Bielack, B. Kempf-Bielack, G. Delling et al., “Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols,” Journal of Clinical Oncology, vol. 20, no. 3, pp. 776–790, 2002. View at Publisher · View at Google Scholar
  8. L. Mirabello, R. J. Troisi, and S. A. Savage, “International osteosarcoma incidence patterns in children and adolescents, middle ages and elderly persons,” International Journal of Cancer, vol. 125, no. 1, pp. 229–234, 2009. View at Publisher · View at Google Scholar · View at PubMed
  9. D. M. Parkin, C. A. Stiller, and J. Nectoux, “International variations in the incidence of childhood bone tumours,” International Journal of Cancer, vol. 53, no. 3, pp. 371–376, 1993. View at Publisher · View at Google Scholar
  10. E. Steliarova-Foucher, C. Stiller, P. Kaatsch et al., “Geographical patterns and time trends of cancer incidence and survival among children and adolescents in Europe since the 1970s (the ACCIS project): an epidemiological study,” Lancet, vol. 364, no. 9451, pp. 2097–2105, 2004. View at Publisher · View at Google Scholar · View at PubMed
  11. C. A. Stiller and D. M. Parkin, “Geographic and ethnic variations in the incidence of childhood cancer,” British Medical Bulletin, vol. 52, no. 4, pp. 682–703, 1996. View at Google Scholar
  12. R. Eyre, R. G. Feltbower, P. W. James et al., “The epidemiology of bone cancer in 0–39 year olds in northern England, 1981–2002,” BMC Cancer, vol. 10, article 357, 2010. View at Publisher · View at Google Scholar · View at PubMed
  13. D. M. Parkin, C. A. Stiller, G. J. Draper, and C. A. Bieber, “The international incidence of childhood cancer,” International Journal of Cancer, vol. 42, no. 4, pp. 511–520, 1988. View at Google Scholar
  14. C. H. Price, “Osteogenic sarcoma; an analysis of the age and sex incidence,” British Journal of Cancer, vol. 9, pp. 558–574, 1955. View at Google Scholar
  15. A. O. Sabanas, D. C. Dahlin, D. S. Childs Jr., and J. C. Ivins, “Postradiation sarcoma of bone,” Cancer, vol. 9, pp. 528–542, 1956. View at Google Scholar
  16. A. G. Huvos, “Osteogenic sarcoma of bones and soft tissues in older persons. A clinicopathologic analysis of 117 patients older than 60 years,” Cancer, vol. 57, no. 7, pp. 1442–1449, 1986. View at Google Scholar
  17. A. M. Linabery and J. A. Ross, “Trends in childhood cancer incidence in the U.S. (1992–2004),” Cancer, vol. 112, no. 2, pp. 416–432, 2008. View at Publisher · View at Google Scholar · View at PubMed
  18. D. M. Parkin, E. Kramarova, G. J. Draper et al., International Incidence of Childhood Cancer, IARC Scientific Publication, Lyon, France, 1998.
  19. J. B. Blackwell, T. J. Threlfall, and K. A. McCaul, “Primary malignant bone tumours in Western Australia, 1972–1996,” Pathology, vol. 37, no. 4, pp. 278–283, 2005. View at Publisher · View at Google Scholar · View at PubMed
  20. J. G. Gurney, A. R. Swensen, and M. Bulterys, “Malignant bone tumors,” in Cancer Incidence and Survival Among Children and Adolescents: United States SEER Program 1975–1995, L. A. G. Ries, M. A. Smith, and J. G. Gurney, Eds., pp. 99–110, National Cancer Institute, SEER Program, 1999. View at Google Scholar
  21. T. A. Damron, W. G. Ward, and A. Stewart, “Osteosarcoma, chondrosarcoma, and Ewing's sarcoma: national cancer data base report,” Clinical Orthopaedics and Related Research, no. 459, pp. 40–47, 2007. View at Publisher · View at Google Scholar · View at PubMed
  22. M.R. Hanson, “Epidemiology of cancer in the young,” in Cancer in the Young, A. Levine, Ed., Masson Publishing, New York, NY, USA, 1982. View at Google Scholar
  23. A. G. Glass and J. F. Fraumeni Jr., “Epidemiology of bone cancer in children,” Journal of the National Cancer Institute, vol. 44, no. 1, pp. 187–199, 1970. View at Google Scholar
  24. S. E. Larsson and R. Lorentzon, “The incidence of malignant primary bone tumors in relation to age, sex and site. A study of osteogenic sarcoma, chondrosarcoma and Ewing's sarcoma diagnosed in Sweden from 1958 to 1968,” Journal of Bone and Joint Surgery. Series B, vol. 56, no. 3, pp. 534–540, 1974. View at Google Scholar
  25. J. G. Gurney, R. K. Severson, S. Davis, and L. L. Robison, “Incidence of cancer in children in the United States: sex-, race-, and 1- year age-specific rates by histologic type,” Cancer, vol. 75, no. 8, pp. 2186–2195, 1995. View at Publisher · View at Google Scholar
  26. C. A. Stiller, S. J. Passmore, M. E. Kroll, P. A. Brownbill, J. C. Wallis, and A. W. Craft, “Patterns of care and survival for patients aged under 40 years with bone sarcoma in Britain, 1980-1994,” British Journal of Cancer, vol. 94, no. 1, pp. 22–29, 2006. View at Publisher · View at Google Scholar · View at PubMed
  27. E. Kramárová and C. A. Stiller, “The International Classification of Childhood Cancer,” International Journal of Cancer, vol. 68, no. 6, pp. 759–765, 1996. View at Publisher · View at Google Scholar
  28. J. C. M. Clark, C. R. Dass, and P. F. M. Choong, “A review of clinical and molecular prognostic factors in osteosarcoma,” Journal of Cancer Research and Clinical Oncology, vol. 134, no. 3, pp. 281–297, 2008. View at Publisher · View at Google Scholar · View at PubMed
  29. R. J. Grimer, S. R. Cannon, A. M. Taminiau et al., “Osteosarcoma over the age of forty,” European Journal of Cancer, vol. 39, no. 2, pp. 157–163, 2003. View at Publisher · View at Google Scholar
  30. Automatic Childhood Cancer Information System, Cancer Incidence and Survival by Registry and Tumour, IARC, 2003.
  31. L. Foster, G. F. Dall, R. Reid, W. H. Wallace, and D. E. Porter, “Twentieth-century survival from osteosarcoma in childhood: trends from 1933 to 2004,” Journal of Bone and Joint Surgery. Series B, vol. 89, no. 9, pp. 1234–1238, 2007. View at Publisher · View at Google Scholar · View at PubMed
  32. W. Ajiki, A. Hanai, H. Tsukuma, T. Hiyama, and I. Fujimoto, “Survival rates of childhood cancer patients in Osaka, Japan, 1975–1984,” Japanese Journal of Cancer Research, vol. 86, no. 1, pp. 13–20, 1995. View at Google Scholar
  33. G. Gatta, R. Capocaccia, M. P. Coleman, L. A. Gloeckler Ries, and F. Berrino, “Childhood cancer survival in Europe and the United States,” Cancer, vol. 95, no. 8, pp. 1767–1772, 2002. View at Publisher · View at Google Scholar · View at PubMed
  34. M. M. Sampo, M. Tarkkanen, A. H. Kivioja, M. H. Taskinen, R. Sankila, and T. O. Böhling, “Osteosarcoma in Finland from 1971 through 1990: a nationwide study of epidemiology and outcome,” Acta Orthopaedica, vol. 79, no. 6, pp. 861–866, 2008. View at Publisher · View at Google Scholar · View at PubMed
  35. P. Picci, M. Mercuri, S. Ferrari et al., “Survival in high-grade osteosarcoma: improvement over 21 years at a single institution,” Annals of Oncology, vol. 21, no. 6, pp. 1366–1373, 2009. View at Publisher · View at Google Scholar · View at PubMed
  36. A. Longhi, C. Errani, D. Gonzales-Arabio, C. Ferrari, and M. Mercuri, “Osteosarcoma in patients older than 65 years,” Journal of Clinical Oncology, vol. 26, no. 33, pp. 5368–5373, 2008. View at Publisher · View at Google Scholar · View at PubMed
  37. M. T. Harting, K. P. Lally, R. J. Andrassy et al., “Age as a prognostic factor for patients with osteosarcoma: an analysis of 438 patients,” Journal of Cancer Research and Clinical Oncology, vol. 136, no. 4, pp. 561–570, 2010. View at Publisher · View at Google Scholar · View at PubMed
  38. K. Okada, T. Hasegawa, J. Nishida et al., “Osteosarcomas after the age of 50: a clinicopathologic study of 64 cases—an experience in northern Japan,” Annals of Surgical Oncology, vol. 11, no. 11, pp. 998–1004, 2004. View at Publisher · View at Google Scholar · View at PubMed
  39. B. Carsi and M. G. Rock, “Primary osteosarcoma in adults older than 40 years,” Clinical Orthopaedics and Related Research, no. 397, pp. 53–61, 2002. View at Google Scholar
  40. B. Novakovic, “U.S. childhood cancer survival, 1973–1987,” Medical and Pediatric Oncology, vol. 23, no. 6, pp. 480–486, 1994. View at Publisher · View at Google Scholar
  41. G. Gatta, R. Capocaccia, C. Stiller et al., “Childhood cancer survival trends in Europe: a EUROCARE working group study,” Journal of Clinical Oncology, vol. 23, no. 16, pp. 3742–3751, 2005. View at Publisher · View at Google Scholar · View at PubMed
  42. V. Arndt, B. Lacour, E. Steliarova-Foucher et al., “Up-to-date monitoring of childhood cancer long-term survival in Europe: tumours of the sympathetic nervous system, retinoblastoma, renal and bone tumours, and soft tissue sarcomas,” Annals of Oncology, vol. 18, no. 10, pp. 1722–1733, 2007. View at Publisher · View at Google Scholar · View at PubMed
  43. W. F. Taylor, J. C. Ivins, and D. J. Pritchard, “Trends and variability in survival among patients with osteosarcoma: a 7-year update,” Mayo Clinic Proceedings, vol. 60, no. 2, pp. 91–104, 1985. View at Google Scholar
  44. R. Eyre, R. G. Feltbower, E. Mubwandarikwa, T. O. B. Eden, and R. J. Q. McNally, “Epidemiology of bone tumours in children and young adults,” Pediatric Blood and Cancer, vol. 53, no. 6, pp. 941–952, 2009. View at Publisher · View at Google Scholar · View at PubMed
  45. E. Gazzano, L. Bergandi, C. Riganti et al., “Fluoride effects: the two faces of janus,” Current Medicinal Chemistry, vol. 17, no. 22, pp. 2431–2441, 2010. View at Publisher · View at Google Scholar
  46. E. B. Bassin, D. Wypij, R. B. Davis, and M. A. Mittleman, “Age-specific fluoride exposure in drinking water and osteosarcoma (United States),” Cancer Causes and Control, vol. 17, no. 4, pp. 421–428, 2006. View at Publisher · View at Google Scholar · View at PubMed
  47. C. W. Douglass and K. Joshipura, “Caution needed in fluoride and osteosarcoma study,” Cancer Causes and Control, vol. 17, no. 4, pp. 481–482, 2006. View at Publisher · View at Google Scholar · View at PubMed
  48. E. Ron, “Cancer risks from medical radiation,” Health Physics, vol. 85, no. 1, pp. 47–59, 2003. View at Publisher · View at Google Scholar
  49. G. M. Dores, C. Metayer, R. E. Curtis et al., “Second malignant neoplasms among long-term survivors of Hodgkin's disease: a population-based evaluation over 25 years,” Journal of Clinical Oncology, vol. 20, no. 16, pp. 3484–3494, 2002. View at Publisher · View at Google Scholar
  50. M. S. Linet, K. P. Kim, and P. Rajaraman, “Children's exposure to diagnostic medical radiation and cancer risk: epidemiologic and dosimetric considerations,” Pediatric Radiology, vol. 39, no. 1, pp. S4–S26, 2009. View at Publisher · View at Google Scholar · View at PubMed
  51. G. A. B. Lima, E. M. S. Gomes, R. C. Nunes et al., “Osteosarcoma and acromegaly: a case report and review of the literature,” Journal of Endocrinological Investigation, vol. 29, no. 11, pp. 1006–1011, 2006. View at Google Scholar
  52. R. Troisi, M. N. Masters, K. Joshipura et al., “Perinatal factors, growth and development, and osteosarcoma risk,” British Journal of Cancer, vol. 95, no. 11, pp. 1603–1607, 2006. View at Publisher · View at Google Scholar · View at PubMed
  53. A. Longhi, A. Pasini, A. Cicognani et al., “Height as a risk factor for osteosarcoma,” Journal of Pediatric Hematology/Oncology, vol. 27, no. 6, pp. 314–318, 2005. View at Publisher · View at Google Scholar
  54. P. E. Scranton Jr., F. A. DeCicco, R. S. Totten, and E. J. Yunis, “Prognostic factors in osteosarcoma. A review of 20 year's experience at the University of Pittsburgh Hlth Center Hospitals,” Cancer, vol. 36, no. 6, pp. 2179–2191, 1975. View at Google Scholar
  55. M. Rytting, P. Pearson, A. K. Raymond et al., “Osteosarcoma in preadolescent patients,” Clinical Orthopaedics and Related Research, no. 373, pp. 39–50, 2000. View at Google Scholar
  56. S. J. Withrow and C. Khanna, “Bridging the gap between experimental animals and humans in osteosarcoma,” Cancer Treatment and Research, vol. 152, pp. 439–446, 2009. View at Publisher · View at Google Scholar
  57. M. Pollak, “Insulin and insulin-like growth factor signalling in neoplasia,” Nature Reviews Cancer, vol. 8, no. 12, pp. 915–928, 2008. View at Publisher · View at Google Scholar · View at PubMed
  58. I. Cheng, D. O. Stram, K. L. Penney et al., “Common genetic variation in IGF1 and prostate cancer risk in the multiethnic cohort,” Journal of the National Cancer Institute, vol. 98, no. 2, pp. 123–134, 2006. View at Publisher · View at Google Scholar · View at PubMed
  59. C. C. Kappel, M. C. Velez-Yanguas, S. Hirschfeld, and L. J. Helman, “Human osteosarcoma cell lines are dependent on insulin-like growth factor I for in vitro growth,” Cancer Research, vol. 54, no. 10, pp. 2803–2807, 1994. View at Google Scholar
  60. M. N. Pollak, C. Polychronakos, and M. Richard, “Insulinlike growth factor I: a potent mitogen for human osteogenic sarcoma,” Journal of the National Cancer Institute, vol. 82, no. 4, pp. 301–305, 1990. View at Google Scholar
  61. G. Fürstenberger and H. J. Senn, “Insulin-like growth factors and cancer,” Lancet Oncology, vol. 3, no. 5, pp. 298–302, 2002. View at Publisher · View at Google Scholar
  62. S. A. Savage, K. Woodson, E. Walk et al., “Analysis of genes critical for growth regulation identifies insulin-like growth factor 2 receptor variations with possible functional significance as risk factors for osteosarcoma,” Cancer Epidemiology Biomarkers and Prevention, vol. 16, no. 8, pp. 1667–1674, 2007. View at Publisher · View at Google Scholar · View at PubMed
  63. J. F. Fraumeni Jr., “Stature and malignant tumors of bone in childhood and adolescence,” Cancer, vol. 20, no. 6, pp. 967–973, 1967. View at Google Scholar
  64. M. A. Goodman, J. H. McMaster, and A. L. Drash, “Metabolic and endocrine alterations in osteosarcoma patients,” Cancer, vol. 42, no. 2, pp. 603–610, 1978. View at Google Scholar
  65. K. H. Gelberg, E. F. Fitzgerald, S. A. Hwang, and R. Dubrow, “Growth and development and other risk factors for osteosarcoma in children and young adults,” International Journal of Epidemiology, vol. 26, no. 2, pp. 272–278, 1997. View at Google Scholar
  66. E. Ruza, E. Sotillo, L. Sierrasesúmaga, C. Azcona, and A. Patiño-García, “Analysis of polymorphisms of the vitamin D receptor, estrogen receptor, and collagen Iα1 genes and their relationship with height in children with bone cancer,” Journal of Pediatric Hematology/Oncology, vol. 25, no. 10, pp. 780–786, 2003. View at Publisher · View at Google Scholar
  67. S. J. Cotterill, C. M. Wright, M. S. Pearce, and A. W. Craft, “Stature of young people with malignant bone tumors,” Pediatric Blood and Cancer, vol. 42, no. 1, pp. 59–63, 2004. View at Google Scholar
  68. L. A. Brostrom, U. Adamson, R. Filipsson, and K. Hall, “Longitudinal growth and dental development in osteosarcoma patients,” Acta Orthopaedica Scandinavica, vol. 51, no. 5, pp. 755–759, 1980. View at Google Scholar
  69. W. P. Cool, R. J. Grimer, S. R. Carter, R. M. Tillman, and A. M. Davies, “Longitudinal growth following treatment for osteosarcoma,” Sarcoma, vol. 2, no. 2, pp. 115–119, 1998. View at Publisher · View at Google Scholar · View at PubMed
  70. D. B. Glasser, K. Duane, J. M. Lane, J. H. Healey, and B. Caparros-Sison, “The effect of chemotherapy on growth in the skeletally immature individual,” Clinical Orthopaedics and Related Research, no. 262, pp. 93–100, 1991. View at Google Scholar
  71. R. Vassilopoulou-Sellin, C. J. Walis, and N. A. Samaan, “Hormonal evaluation in patients with osteosarcoma,” Journal of Surgical Oncology, vol. 28, no. 3, pp. 209–213, 1985. View at Google Scholar
  72. E. A. Operskalski, S. Preston-Martin, B. E. Henderson, and B. R. Visscher, “A case-control study of osteosarcoma in young persons,” American Journal of Epidemiology, vol. 126, no. 1, pp. 118–126, 1987. View at Google Scholar
  73. C. H. Pui, R. K. Dodge, S. L. George, and A. A. Green, “Height at diagnosis of malignancies,” Archives of Disease in Childhood, vol. 62, no. 5, pp. 495–499, 1987. View at Google Scholar
  74. J. D. Buckley, T. W. Pendergrass, C. M. Buckley et al., “Epidemiology of osteosarcoma and Ewing's sarcoma in childhood: a study of 305 cases by the children's cancer group,” Cancer, vol. 83, no. 7, pp. 1440–1448, 1998. View at Publisher · View at Google Scholar
  75. K. Silventoinen, S. Sammalisto, M. Perola et al., “Heritability of adult body height: a comparative study of twin cohorts in eight countries,” Twin Research, vol. 6, no. 5, pp. 399–408, 2003. View at Publisher · View at Google Scholar · View at PubMed
  76. R. Randhawa and P. Cohen, “The role of the insulin-like growth factor system in prenatal growth,” Molecular Genetics and Metabolism, vol. 86, no. 1-2, pp. 84–90, 2005. View at Publisher · View at Google Scholar · View at PubMed
  77. J. A. Ross, J. P. Perentesis, L. L. Robison, and S. M. Davies, “Big babies and infant leukemia: a role for insulin-like growth factor-1?” Cancer Causes and Control, vol. 7, no. 5, pp. 553–559, 1996. View at Google Scholar
  78. L. L. Hjalgrim, T. Westergaard, K. Rostgaard et al., “Birth weight as a risk factor for childhood leukemia: a meta-analysis of 18 epidemiologic studies,” American Journal of Epidemiology, vol. 158, no. 8, pp. 724–735, 2003. View at Publisher · View at Google Scholar
  79. J. Schüz and M. R. Forman, “Birthweight by gestational age and childhood cancer,” Cancer Causes and Control, vol. 18, no. 6, pp. 655–663, 2007. View at Publisher · View at Google Scholar · View at PubMed
  80. T. Harder, A. Plagemann, and A. Harder, “Birth weight and subsequent risk of childhood primary brain tumors: a meta-analysis,” American Journal of Epidemiology, vol. 168, no. 4, pp. 366–373, 2008. View at Publisher · View at Google Scholar · View at PubMed
  81. S. Ognjanovic, S. E. Carozza, E. J. Chow et al., “Birth characteristics and the risk of childhood rhabdomyosarcoma based on histological subtype,” British Journal of Cancer, vol. 102, no. 1, pp. 227–231, 2010. View at Publisher · View at Google Scholar · View at PubMed
  82. J. Schuz, L. S. Schmidt, P. Kogner et al., “Birth characteristics and Wilms tumours in children in the Nordic countries: a register-based case-control study,” International Journal of Cancer, 2010. In press.
  83. W. M. Leisenring, N. E. Breslow, I. E. Evans, J. B. Beckwith, M. J. Coppes, and P. Grundy, “Increased birth weights of National Wilms' Tumor Study patients suggest a growth factor excess,” Cancer Research, vol. 54, no. 17, pp. 4680–4683, 1994. View at Google Scholar
  84. A. Smith, T. Lightfoot, J. Simpson, and E. Roman, “Birth weight, sex and childhood cancer: a report from the United Kingdom Childhood Cancer Study,” Cancer Epidemiology, vol. 33, no. 5, pp. 363–367, 2009. View at Publisher · View at Google Scholar · View at PubMed
  85. K. B. Michels and F. Xue, “Role of birthweight in the etiology of breast cancer,” International Journal of Cancer, vol. 119, no. 9, pp. 2007–2025, 2006. View at Publisher · View at Google Scholar · View at PubMed
  86. M. Eriksson, H. Wedel, M. A. Wallander et al., “The impact of birth weight on prostate cancer incidence and mortality in a population-based study of men born in 1913 and followed up from 50 to 85 years of age,” Prostate, vol. 67, no. 11, pp. 1247–1254, 2007. View at Publisher · View at Google Scholar · View at PubMed
  87. A. L. Hartley, J. M. Birch, P. A. McKinney et al., “The Inter-Regional Epidemiological Study of Childhood Cancer (IRESCC): case control study of children with bone and soft tissue sarcomas,” British Journal of Cancer, vol. 58, no. 6, pp. 838–842, 1988. View at Google Scholar
  88. A. Goode and R. Layfield, “Recent advances in understanding the molecular basis of Paget disease of bone,” Journal of Clinical Pathology, vol. 63, no. 3, pp. 199–203, 2010. View at Publisher · View at Google Scholar · View at PubMed
  89. T. Cundy and M. Bolland, “Paget disease of bone,” Trends in Endocrinology and Metabolism, vol. 19, no. 7, pp. 246–253, 2008. View at Publisher · View at Google Scholar · View at PubMed
  90. M. F. Hansen, M. Seton, and A. Merchant, “Osteosarcoma in Paget's disease of bone,” Journal of Bone and Mineral Research, vol. 21, pp. P58–P63, 2006. View at Publisher · View at Google Scholar · View at PubMed
  91. B. Fuchs and D. J. Pritchard, “Etiology of osteosarcoma,” Clinical Orthopaedics and Related Research, no. 397, pp. 40–52, 2002. View at Google Scholar
  92. N. Laurin, J. P. Brown, J. Morissette, and V. Raymond, “Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in paget disease of bone,” American Journal of Human Genetics, vol. 70, no. 6, pp. 1582–1588, 2002. View at Publisher · View at Google Scholar · View at PubMed
  93. K. Al-Romaih, J. Bayani, J. Vorobyova et al., “Chromosomal instability in osteosarcoma and its association with centrosome abnormalities,” Cancer Genetics and Cytogenetics, vol. 144, no. 2, pp. 91–99, 2003. View at Publisher · View at Google Scholar
  94. A. A. Sandberg and J. A. Bridge, “Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: osteosarcoma and related tumors,” Cancer Genetics and Cytogenetics, vol. 145, no. 1, pp. 1–30, 2003. View at Publisher · View at Google Scholar
  95. A. Patino-Garcia, E. Sotillo-Pineiro, C. Modesto, and L. Sierrasesumaga, “Analysis of the human tumour necrosis factor-alpha (TNFα) gene promoter polymorphisms in children with bone cancer,” Journal of Medical Genetics, vol. 37, no. 10, pp. 789–792, 2000. View at Google Scholar
  96. S. A. Savage, L. Burdett, R. Troisi, C. Douglass, R. N. Hoover, and S. J. Chanock, “Germ-line genetic variation of TP53 in osteosarcoma,” Pediatric Blood and Cancer, vol. 49, no. 1, pp. 28–33, 2007. View at Publisher · View at Google Scholar · View at PubMed
  97. N. V. Koshkina, E. S. Kleinerman, G. Li, C. C. Zhao, Q. Wei, and E. M. Sturgis, “Exploratory analysis of Fas gene polymorphisms in pediatric osteosarcoma patients,” Journal of Pediatric Hematology/Oncology, vol. 29, no. 12, pp. 815–821, 2007. View at Publisher · View at Google Scholar · View at PubMed
  98. G. Toffoli, P. Biason, A. Russo et al., “Effect of TP53 Arg72Pro and MDM2 SNP309 polymorphisms on the risk of high-grade osteosarcoma development and survival,” Clinical Cancer Research, vol. 15, no. 10, pp. 3550–3556, 2009. View at Publisher · View at Google Scholar · View at PubMed
  99. Y.-S. Hu, Y. Pan, W.-H. Li, Y. Zhang, J. Li, and B.-A. Ma, “Association between TGFBR1*6A and osteosarcoma: a Chinese case-control study,” BMC Cancer, vol. 10, article 169, 2010. View at Publisher · View at Google Scholar · View at PubMed
  100. L. Mirabello, S. I. Berndt, G. F. Seratti et al., “Genetic variation at chromosome 8q24 in osteosarcoma cases and controls,” Carcinogenesis, vol. 31, no. 8, pp. 1400–1404, 2010. View at Publisher · View at Google Scholar · View at PubMed
  101. F. P. Li and J. F. Fraumeni Jr., “Soft-tissue sarcomas, breast cancer, and other neoplasms. A familial syndrome?” Annals of Internal Medicine, vol. 71, no. 4, pp. 747–752, 1969. View at Google Scholar
  102. K. Schneider and J. Garber, “Li-Fraumeni Syndrome,” in Gene Reviews, R. A. Pagon, T. C. Bird, C. R. Dolan, and K. Stephens, Eds., University of Washington, Seattle, Wash, USA, 1993. View at Google Scholar
  103. D. Malkin, F. P. Li, L. C. Strong et al., “Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms,” Science, vol. 250, no. 4985, pp. 1233–1238, 1990. View at Google Scholar
  104. M. Olivier, M. Hollstein, and P. Hainaut, “TP53 mutations in human cancers: origins, consequences, and clinical use,” Cold Spring Harbor Perspectives in Biology, vol. 2, no. 1, article a001008, 2010. View at Publisher · View at Google Scholar · View at PubMed
  105. J. S. Wunder, N. Gokgoz, R. Parkes et al., “TP53 mutations and outcome in osteosarcoma: a prospective, multicenter study,” Journal of Clinical Oncology, vol. 23, no. 7, pp. 1483–1490, 2005. View at Publisher · View at Google Scholar · View at PubMed
  106. D. Lohmann, “Retinoblastoma,” Advances in Experimental Medicine and Biology, vol. 685, pp. 220–227, 2010. View at Google Scholar
  107. R. A. Kleinerman, M. A. Tucker, D. H. Abramson, J. M. Seddon, R. E. Tarone, and J. F. Fraumeni Jr., “Risk of soft tissue sarcomas by individual subtype in survivors of hereditary retinoblastoma,” Journal of the National Cancer Institute, vol. 99, no. 1, pp. 24–31, 2007. View at Publisher · View at Google Scholar · View at PubMed
  108. C. L. Yu, M. A. Tucker, D. H. Abramson et al., “Cause-specific mortality in long-term survivors of retinoblastoma,” Journal of the National Cancer Institute, vol. 101, no. 8, pp. 581–591, 2009. View at Publisher · View at Google Scholar · View at PubMed
  109. L. Larizza, G. Roversi, and L. Volpi, “Rothmund-thomson syndrome,” Orphanet Journal of Rare Diseases, vol. 5, no. 1, article 2, 2010. View at Publisher · View at Google Scholar · View at PubMed
  110. L. L. Wang and S. E. Plon, “Rothmund-Thomson syndrome,” in Gene Reviews, R. A. Pagon, T. C. Bird, C. R. Dolan, and K. Stephens, Eds., University of Washington, Seattle, Wash, USA, 1993. View at Google Scholar
  111. L. L. Wang, M. L. Levy, R. A. Lewis et al., “Clinical manifestations in a cohort of 41 Rothmund-Thomson syndrome patients,” American Journal of Medical Genetics, vol. 102, no. 1, pp. 11–17, 2001. View at Publisher · View at Google Scholar
  112. M. M. Sanz and J. German, “Bloom's syndrome,” in Gene Reviews, R. A. Pagon, T. C. Bird, C. R. Dolan, and K. Stephens, Eds., University of Washington, Seattle, Wash, USA, 1993. View at Google Scholar
  113. D. F. Leistritz, N. Hanson, G. M. Martin, and J. Oshima, “Werner syndrome,” in Gene Reviews, R. A. Pagon, T. C. Bird, C. R. Dolan, and K. Stephens, Eds., University of Washington, Seattle, Wash, USA, 1993. View at Google Scholar
  114. M. Muftuoglu, J. Oshima, C. Kobbe, W.-H. Cheng, D. F. Leistritz, and V. A. Bohr, “The clinical characteristics of Werner syndrome: molecular and biochemical diagnosis,” Human Genetics, vol. 124, no. 4, pp. 369–377, 2008. View at Publisher · View at Google Scholar · View at PubMed
  115. M. Goto, R. W. Miller, Y. Ishikawa, and H. Sugano, “Excess of rare cancers in Werner syndrome (adult progeria),” Cancer Epidemiology, Biomarkers and Prevention, vol. 5, pp. 239–246, 1996. View at Google Scholar
  116. Y. Ishikawa, R. W. Miller, R. Machinami, H. Sugano, and M. Goto, “Atypical osteosarcomas in Werner Syndrome (Adult Progeria),” Japanese Journal of Cancer Research, vol. 91, no. 12, pp. 1345–1349, 2000. View at Google Scholar
  117. C. Clinton and H. T. Gazda, “Diamond-Blackfan anemia,” in Gene Reviews, R. A. Pagon, T. C. Bird, C. R. Dolan, and K. Stephens, Eds., University of Washington, Seattle, Wash, USA, 1993. View at Google Scholar
  118. J. M. Lipton, N. Federman, Y. Khabbaze et al., “Osteogenic sarcoma associated with Diamond-Blackfan anemia: a report from the Diamond-Blackfan anemia registry,” Journal of Pediatric Hematology/Oncology, vol. 23, no. 1, pp. 39–44, 2001. View at Publisher · View at Google Scholar
  119. G. L. Bond, W. Hu, E. E. Bond et al., “A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans,” Cell, vol. 119, no. 5, pp. 591–602, 2004. View at Publisher · View at Google Scholar · View at PubMed
  120. A. Patino-Garcia, E. Sotillo-Pineiro, C. Modesto, and L. Sierrasesumaga, “Analysis of the human tumour necrosis factor-alpha (TNFα) gene promoter polymorphisms in children with bone cancer,” Journal of Medical Genetics, vol. 37, no. 10, pp. 789–791, 2000. View at Google Scholar
  121. C. Whibley, P. D. P. Pharoah, and M. Hollstein, “p53 polymorphisms: cancer implications,” Nature Reviews Cancer, vol. 9, no. 2, pp. 95–107, 2009. View at Publisher · View at Google Scholar · View at PubMed
  122. G. Bougeard, S. Baert-Desurmont, I. Tournier et al., “Impact of the MDM2 SNP309 and p53 Arg72Pro polymorphism on age of tumour onset in Li-Fraumeni syndrome,” Journal of Medical Genetics, vol. 43, no. 6, pp. 531–533, 2006. View at Publisher · View at Google Scholar · View at PubMed
  123. S. I. Berndt, J. D. Potter, A. Hazra et al., “Pooled analysis of genetic variation at chromosome 8q24 and colorectal neoplasia risk,” Human Molecular Genetics, vol. 17, no. 17, pp. 2665–2672, 2008. View at Publisher · View at Google Scholar · View at PubMed
  124. O. Fletcher, N. Johnson, L. Gibson et al., “Association of genetic variants at 8q24 with breast cancer risk,” Cancer Epidemiology Biomarkers and Prevention, vol. 17, no. 3, pp. 702–705, 2008. View at Publisher · View at Google Scholar · View at PubMed
  125. C. A. Haiman, N. Patterson, M. L. Freedman et al., “Multiple regions within 8q24 independently affect risk for prostate cancer,” Nature Genetics, vol. 39, no. 5, pp. 638–644, 2007. View at Publisher · View at Google Scholar · View at PubMed
  126. M. M. Pomerantz, N. Ahmadiyeh, LI. Jia et al., “The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer,” Nature Genetics, vol. 41, no. 8, pp. 882–884, 2009. View at Publisher · View at Google Scholar · View at PubMed
  127. M. Jain, C. Arvanitis, K. Chu et al., “Sustained loss of a neoplastic phenotype by brief inactivation of MYC,” Science, vol. 297, no. 5578, pp. 102–104, 2002. View at Publisher · View at Google Scholar · View at PubMed
  128. Z. Zhang, H. Xue, W. Gong et al., “FAS promoter polymorphisms and cancer risk: a meta-analysis based on 34 case-control studies,” Carcinogenesis, vol. 30, no. 3, pp. 487–493, 2009. View at Publisher · View at Google Scholar · View at PubMed
  129. J. Zhu, C. Qin, M. Wang et al., “Functional polymorphisms in cell death pathway genes and risk of renal cell carcinoma,” Molecular Carcinogenesis, vol. 49, no. 9, pp. 810–817, 2010. View at Publisher · View at Google Scholar · View at PubMed
  130. R. Y. Liao, C. Mao, L. X. Qiu, H. Ding, Q. Chen, and H. F. Pan, “TGFBR1*6A/9A polymorphism and cancer risk: a meta-analysis of 13,662 cases and 14,147 controls,” Molecular Biology Reports, vol. 37, pp. 3227–3232, 2010. View at Google Scholar
  131. R. C. Brown, T. Dwyer, C. Kasten et al., “Cohort profile: the international childhood cancer cohort consortium (I4C),” International Journal of Epidemiology, vol. 36, no. 4, pp. 724–730, 2007. View at Publisher · View at Google Scholar · View at PubMed