Table of Contents Author Guidelines Submit a Manuscript
Sarcoma
Volume 2012, Article ID 148614, 9 pages
http://dx.doi.org/10.1155/2012/148614
Research Article

Characterization of Liposarcoma Cell Lines for Preclinical and Biological Studies

1Cancer Stem Cell Innovation Centre and Department of Tumor Biology, Institute of Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, P.O. Box 4953, Nydalen, 0424 Oslo, Norway
2Department of Molecular Bioscience, University of Oslo, P.O. Box 1041, Blindern, 0316 Oslo, Norway

Received 16 April 2012; Accepted 24 May 2012

Academic Editor: R. Pollock

Copyright © 2012 Eva W. Stratford et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Conyers, S. Young, and D. M. Thomas, “Liposarcoma: molecular genetics and therapeutics,” Sarcoma, vol. 2011, Article ID 483154, 13 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. W. H. Henricks, Y. C. Chu, J. R. Goldblum, and S. W. Weiss, “Dedifferentiated liposarcoma: a clinicopathological analysis of 155 cases with a proposal for an expanded definition of dedifferentiation,” American Journal of Surgical Pathology, vol. 21, no. 3, pp. 271–281, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. D. McCormick, T. Mentzel, A. Beham, and C. D. M. Fletcher, “Dedifferentiated liposarcoma: clinicopathologic analysis of 32 cases suggesting a better prognostic subgroup among pleomorphic sarcomas,” American Journal of Surgical Pathology, vol. 18, no. 12, pp. 1213–1223, 1994. View at Google Scholar · View at Scopus
  4. S. Singer, C. R. Antonescu, E. Riedel, and M. F. Brennan, “Histologic subtype and margin of resection predict pattern of recurrence and survival for retroperitoneal liposarcoma,” Annals of Surgery, vol. 238, no. 3, pp. 358–371, 2003. View at Google Scholar · View at Scopus
  5. F. Pedeutour, A. Forus, J. M. Coindre et al., “Structure of the supernumerary ring and giant rod chromosomes in adipose tissue tumors,” Genes Chromosomes & Cancer, vol. 24, no. 1, pp. 30–41, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Rosai, M. Akerman, P. Dal Cin et al., “Combined morphologic and karyotypic study of 59 atypical lipomatous tumors: evaluation of their relationship and differential diagnosis with other adipose tissue tumors (a report of the CHAMP study group),” American Journal of Surgical Pathology, vol. 20, no. 10, pp. 1182–1189, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Nishio, H. Iwasaki, M. Ishiguro et al., “Establishment of a novel human dedifferentiated liposarcoma cell line, FU-DDLS-1: conventional and molecular cytogenetic characterization,” International Journal of Oncology, vol. 22, no. 3, pp. 535–542, 2003. View at Google Scholar · View at Scopus
  8. F. Persson, A. Olofsson, H. Sjögren et al., “Characterization of the 12q amplicons by high-resolution, oligonucleotide array CGH and expression analyses of a novel liposarcoma cell line,” Cancer Letters, vol. 260, no. 1-2, pp. 37–47, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. E. L. Snyder, D. J. Sandstrom, K. Law et al., “c-Jun amplification and overexpression are oncogenic in liposarcoma but not always sufficient to inhibit the adipocytic differentiation programme,” Journal of Pathology, vol. 218, no. 3, pp. 292–300, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Wabitsch, S. Brüderlein, I. Melzner, M. Braun, G. Mechtersheimer, and P. Möller, “LiSa-2, a novel human liposarcoma cell line with a high capacity for terminal adipose differentiation,” International Journal of Cancer, vol. 88, no. 6, pp. 889–894, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Peng, P. Zhang, J. Liu et al., “An experimental model for the study of well-differentiated and dedifferentiated liposarcoma; deregulation of targetable tyrosine kinase receptors,” Laboratory Investigation, vol. 91, no. 3, pp. 392–403, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Mills, T. Matos, E. Charytonowicz et al., “Characterization and comparison of the properties of sarcoma cell lines in vitro and in vivo,” Human Cell, vol. 22, no. 4, pp. 85–93, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. S. H. Kresse, L. A. Meza-Zepeda, I. Machado, A. Llombart-Bosch, and O. Myklebost, “Preclinical xenograft models of human sarcoma show nonrandom loss of aberrations,” Cancer, vol. 118, no. 2, pp. 558–570, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Skarn, H. M. Namlos, P. Noordhuis, M. Y. Wang, L. A. Meza-Zepeda, and O. Myklebost, “Adipocyte differentiation of human bone marrow-derived stromal cells is modulated by MicroRNA-155, MicroRNA-221, and MicroRNA-222,” Stem cells & development, vol. 864, no. 1, pp. 1–52.
  15. S. O. Freytag, D. L. Paielli, and J. D. Gilbert, “Ectopic expression of the CCAAT/enhancer-binding protein α promotes the adipogenic program in a variety of mouse fibroblastic cells,” Genes and Development, vol. 8, no. 14, pp. 1654–1663, 1994. View at Google Scholar · View at Scopus
  16. P. Tontonoz, E. Hu, and B. M. Spiegelman, “Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor,” Cell, vol. 79, no. 7, pp. 1147–1156, 1994. View at Google Scholar · View at Scopus
  17. P. Tontonoz, S. Singer, B. M. Forman et al., “Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor γ and the retinoid X receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 1, pp. 237–241, 1997. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. Wu, Y. Xie, N. L. R. Bucher, and S. R. Farmer, “Conditional ectopic expression of C/EBPβ in NIH-3T3 cells induces PPARγ and stimulates adipogenesis,” Genes & Development, vol. 9, no. 19, pp. 2350–2363, 1995. View at Google Scholar · View at Scopus
  19. D. A. Bernlohr, N. R. Coe, and V. J. LiCata, “Fatty acid trafficking in the adipocyte,” Seminars in Cell & Developmental Biology, vol. 10, no. 1, pp. 43–49, 1999. View at Google Scholar · View at Scopus
  20. G. Ambrosini, E. B. Sambol, D. Carvajal, L. T. Vassilev, S. Singer, and G. K. Schwartz, “Mouse double minute antagonist Nutlin-3a enhances chemotherapy-induced apoptosis in cancer cells with mutant p53 by activating E2F1,” Oncogene, vol. 26, no. 24, pp. 3473–3481, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. C. R. Müller, E. B. Paulsen, P. Noordhuis, F. Pedeutour, G. Sæter, and O. Myklebost, “Potential for treatment of liposarcomas with the MDM2 antagonist Nutlin-3A,” International Journal of Cancer, vol. 121, no. 1, pp. 199–205, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Singer, N. D. Socci, G. Ambrosini et al., “Gene expression profiling of liposarcoma identifies distinct biological types/subtypes and potential therapeutic targets in well-differentiated and dedifferentiated liposarcoma,” Cancer Research, vol. 67, no. 14, pp. 6626–6636, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. R. H. Shoemaker, “The NCI60 human tumour cell line anticancer drug screen,” Nature Reviews Cancer, vol. 6, no. 10, pp. 813–823, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. S. F. Stinson, M. C. Alley, W. C. Kopp et al., “Morphological and immunocytochemical characteristics of human tumor cell lines for use in a disease-oriented anticancer drug screen,” Anticancer Research, vol. 12, no. 4, pp. 1035–1053, 1992. View at Google Scholar · View at Scopus
  25. M. Balke, A. Neumann, C. Kersting, K. Agelopoulos, C. Gebert, and G. Gosheger, “Morphologic characterization of osteosarcoma growth on the chick chorioallantoic membrane,” BMC Research Notes, vol. 3, article 58, 2010. View at Google Scholar · View at Scopus
  26. A. B. Mohseny, I. MacHado, Y. Cai et al., “Functional characterization of osteosarcoma cell lines provides representative models to study the human disease,” Laboratory Investigation, vol. 91, no. 8, pp. 1195–1205, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Ottaviano, K. L. Schaefer, M. Gajewski et al., “Molecular characterization of commonly used cell lines for bone tumor research: a trans-European EuroBoNet effort,” Genes Chromosomes & Cancer, vol. 49, no. 1, pp. 40–51, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Quintana, M. Shackleton, M. S. Sabel, D. R. Fullen, T. M. Johnson, and S. J. Morrison, “Efficient tumour formation by single human melanoma cells,” Nature, vol. 456, no. 7222, pp. 593–598, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. I. Ben-Porath, M. W. Thomson, V. J. Carey et al., “An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors,” Nature Genetics, vol. 40, no. 5, pp. 499–507, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. J. C. Brune, A. Tormin, M. C. Johansson et al., “Mesenchymal stromal cells from primary osteosarcoma are non-malignant and strikingly similar to their bone marrow counterparts,” International Journal of Cancer, vol. 129, no. 2, pp. 319–330, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Chamberlain, J. Fox, B. Ashton, and J. Middleton, “Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing,” Stem Cells, vol. 25, no. 11, pp. 2739–2749, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. P. C. Park, S. Selvarajah, J. Bayani, M. Zielenska, and J. A. Squire, “Stem cell enrichment approaches,” Seminars in Cancer Biology, vol. 17, no. 3, pp. 257–264, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. E. Stratford, R. Castro, A. Wennerstrom et al., “Liposarcoma cells with aldefluor and CD133 activity have a cancer stem cell potential,” Clinical Sarcoma Research, vol. 1, no. 1, article 8, 2011. View at Google Scholar
  34. Z. F. Yang, D. W. Ho, M. N. Ng et al., “Significance of CD90+ cancer stem cells in human liver cancer,” Cancer Cell, vol. 13, no. 2, pp. 153–166, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. V. Tirino, V. Desiderio, F. Paino et al., “Human primary bone sarcomas contain CD133+ cancer stem cells displaying high tumorigenicity in vivo,” The FASEB Journal, vol. 25, no. 6, pp. 2022–2030, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. E. Pérez-Gómez, G. Del Castillo, S. Juan Francisco, J. M. López-Novoa, C. Bernabéu, and M. Quintanilla, “The role of the TGF-β coreceptor endoglin in cancer,” TheScientificWorldJournal, vol. 10, pp. 2367–2384, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. L. A. Henry, D. A. Johnson, D. Sarrió et al., “Endoglin expression in breast tumor cells suppresses invasion and metastasis and correlates with improved clinical outcome,” Oncogene, vol. 30, no. 9, pp. 1046–1058, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. E. Pardali, D. W. J. van der Schaft, E. Wiercinska et al., “Critical role of endoglin in tumor cell plasticity of Ewing sarcoma and melanoma,” Oncogene, vol. 30, no. 3, pp. 334–345, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. P. P. Levings, S. V. McGarry, T. P. Currie et al., “Expression of an exogenous human Oct-4 promoter identifies tumor-initiating cells in osteosarcoma,” Cancer Research, vol. 69, no. 14, pp. 5648–5655, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. D. Jin, J. Fan, L. Wang et al., “CD73 on tumor cells impairs antitumor T-cell responses: a novel mechanism of tumor-induced immune suppression,” Cancer Research, vol. 70, no. 6, pp. 2245–2255, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Sadej, J. Spychala, and A. C. Skladanowski, “Ecto-5′-nucleotidase (eN, CD73) is coexpressed with metastasis promoting antigens in human melanoma cells,” Nucleosides, Nucleotides & Nucleic Acids, vol. 25, no. 9–11, pp. 1119–1123, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Spychala, E. Lazarowski, A. Ostapkowicz, L. H. Ayscue, A. Jin, and B. S. Mitchell, “Role of estrogen receptor in the regulation of ecto-5′-nucleotidase and adenosine in breast cancer,” Clinical Cancer Research, vol. 10, no. 2, pp. 708–717, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Wang, X. Zhou, T. Zhou et al., “Ecto-5′-nucleotidase promotes invasion, migration and adhesion of human breast cancer cells,” Journal of Cancer Research and Clinical Oncology, vol. 134, no. 3, pp. 365–372, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. C. P. Gibbs, V. G. Kukekov, J. D. Reith et al., “Stem-like cells in bone sarcomas: implications for tumorigenesis,” Neoplasia, vol. 7, no. 11, pp. 967–976, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Al-Hajj, M. S. Wicha, A. Benito-Hernandez, S. J. Morrison, and M. F. Clarke, “Prospective identification of tumorigenic breast cancer cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 7, pp. 3983–3988, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Chu, D. J. Clanton, T. S. Snipas et al., “Characterization of a subpopulation of colon cancer cells with stem cell-like properties,” International Journal of Cancer, vol. 124, no. 6, pp. 1312–1321, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. D. Ponti, A. Costa, N. Zaffaroni et al., “Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties,” Cancer Research, vol. 65, no. 13, pp. 5506–5511, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. Z. Zhu, X. Hao, M. Yan et al., “Cancer stem/progenitor cells are highly enriched in CD133+CD44+ population in hepatocellular carcinoma,” International Journal of Cancer, vol. 126, no. 9, pp. 2067–2078, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. G. J. Klarmann, E. M. Hurt, L. A. Mathews et al., “Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature,” Clinical & Experimental Metastasis, vol. 26, no. 5, pp. 433–446, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. C. Ginestier, M. H. Hur, E. Charafe-Jauffret et al., “ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome,” Cell Stem Cell, vol. 1, no. 5, pp. 555–567, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. P. C. Hermann, S. L. Huber, T. Herrler et al., “Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer,” Cell Stem Cell, vol. 1, no. 3, pp. 313–323, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Ma, K. W. Chan, L. Hu et al., “Identification and characterization of tumorigenic liver cancer stem/progenitor cells,” Gastroenterology, vol. 132, no. 7, pp. 2542–2556, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. C. A. O'Brien, A. Pollett, S. Gallinger, and J. E. Dick, “A human colon cancer cell capable of initiating tumour growth in immunodeficient mice,” Nature, vol. 445, no. 7123, pp. 106–110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. L. Ricci-Vitiani, D. G. Lombardi, E. Pilozzi et al., “Identification and expansion of human colon-cancer-initiating cells,” Nature, vol. 445, no. 7123, pp. 111–115, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. S. K. Singh, I. D. Clarke, M. Terasaki et al., “Identification of a cancer stem cell in human brain tumors,” Cancer Research, vol. 63, no. 18, pp. 5821–5828, 2003. View at Google Scholar · View at Scopus
  56. S. K. Singh, C. Hawkins, I. D. Clarke et al., “Identification of human brain tumour initiating cells,” Nature, vol. 432, no. 7015, pp. 396–401, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. D. Walter, S. Satheesha, P. Albrecht et al., “CD133 positive embryonal rhabdomyosarcoma stem-like cell population is enriched in rhabdospheres,” PLoS One, vol. 6, no. 5, Article ID e19506, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. E. H. Huang, M. J. Hynes, T. Zhang et al., “Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis,” Cancer Research, vol. 69, no. 8, pp. 3382–3389, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Ma, W. C. Kwok, T. K. W. Lee et al., “Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations,” Molecular Cancer Research, vol. 6, no. 7, pp. 1146–1153, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. D. Ran, M. Schubert, L. Pietsch et al., “Aldehyde dehydrogenase activity among primary leukemia cells is associated with stem cell features and correlates with adverse clinical outcomes,” Experimental Hematology, vol. 37, no. 12, pp. 1423–1434, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. Y. Su, Q. Qiu, X. Zhang et al., “Aldehyde dehydrogenase 1 A1-positive cell population is enriched in tumor-initiating cells and associated with progression of bladder cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 19, no. 2, pp. 327–337, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. I. Kryczek, S. Liu, M. Roh et al., “Expression of aldehyde dehydrogenase and CD133 defines ovarian cancer stem cells,” International Journal of Cancer, vol. 130, no. 1, pp. 29–39, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. I. A. Silva, S. Bai, K. McLean et al., “Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival,” Cancer Research, vol. 71, no. 11, pp. 3991–4001, 2011. View at Publisher · View at Google Scholar · View at Scopus