Table of Contents Author Guidelines Submit a Manuscript
Sarcoma
Volume 2012, Article ID 291705, 8 pages
http://dx.doi.org/10.1155/2012/291705
Review Article

Sarcoma Stem Cells: Do We Know What We Are Looking for?

Division of Pediatric Oncology, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Bunting-Blaustein Cancer Research Building, Room 2M51, 1650 Orleans Street, Baltimore, MD 21231, USA

Received 7 December 2011; Revised 20 February 2012; Accepted 20 February 2012

Academic Editor: Igor Matushansky

Copyright © 2012 Matteo Trucco and David Loeb. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. S. Adhikari, N. Agarwal, and T. Iwakuma, “Metastatic potential of tumor-initiating cells in solid tumors,” Frontiers in Bioscience, vol. 16, no. 5, pp. 1927–1938, 2011. View at Publisher · View at Google Scholar
  2. M. F. Clarke, J. E. Dick, P. B. Dirks et al., “Cancer stem cells—perspectives on current status and future directions: AACR workshop on cancer stem cells,” Cancer Research, vol. 66, no. 19, pp. 9339–9344, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. N. A. P. Franken, H. M. Rodermond, J. Stap, J. Haveman, and C. van Bree, “Clonogenic assay of cells in vitro,” Nature Protocols, vol. 1, no. 5, pp. 2315–2319, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Pastrana, V. Silva-Vargas, and F. Doetsch, “Eyes wide open: a critical review of sphere-formation as an assay for stem cells,” Cell Stem Cell, vol. 8, no. 5, pp. 486–498, 2011. View at Publisher · View at Google Scholar
  5. M. Baiocchi, M. Biffoni, L. Ricci-Vitiani, E. Pilozzi, and R. De Maria, “New models for cancer research: human cancer stem cell xenografts,” Current Opinion in Pharmacology, vol. 10, no. 4, pp. 380–384, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. G. A. Challen and M. H. Little, “A side order of stem cells: the SP phenotype,” Stem Cells, vol. 24, no. 1, pp. 3–12, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Machaliński, B. Wiszniewska, M. Baśkiewicz et al., “In vivo and in vitro studies on the toxicity of Hoechst 33342 (Ho342). Implications for employing Ho342 for the isolation of haematopoietic stem cells,” Annals of Transplantation, vol. 3, no. 3, pp. 5–13, 1998. View at Google Scholar · View at Scopus
  8. K. W.R. Broadley, M. K. Hunn, K. J. Farrand et al., “Side population is not necessary or sufficient for a cancer stem cell phenotype in glioblastoma multiforme,” Stem Cells, vol. 29, no. 3, pp. 452–461, 2011. View at Publisher · View at Google Scholar
  9. L. Patrawala, T. Calhoun, R. Schneider-Broussard, J. Zhou, K. Claypool, and D. G. Tang, “Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2 cancer cells are similarly tumorigenic,” Cancer Research, vol. 65, no. 14, pp. 6207–6219, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Honoki, “Do stem-like cells play a role in drug resistance of sarcomas?” Expert Review of Anticancer Therapy, vol. 10, no. 2, pp. 261–270, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Fábián, M. Barok, G. Vereb, and J. Szöllosi, “Die hard: are cancer stem cells the bruce willises of tumor biology?” Cytometry Part A, vol. 75, no. 1, pp. 67–74, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Sell, “Stem cell origin of cancer and differentiation therapy,” Critical Reviews in Oncology/Hematology, vol. 51, no. 1, pp. 1–28, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. I. Chambers, “The molecular basis of pluripotency in mouse embryonic stem cells,” Cloning and Stem Cells, vol. 6, no. 4, pp. 386–391, 2004. View at Google Scholar · View at Scopus
  14. L. Armstrong, M. Stojkovic, I. Dimmick et al., “Phenotypic characterization of murine primitive hematopoietic progenitor cells isolated on basis of aldehyde dehydrogenase activity,” Stem Cells, vol. 22, no. 7, pp. 1142–1151, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. D. A. Hess, T. E. Meyerrose, L. Wirthlin et al., “Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity,” Blood, vol. 104, no. 6, pp. 1648–1655, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Lapidot, C. Sirard, J. Vormoor et al., “A cell initiating human acute myeloid leukaemia after transplantation into SCID mice,” Nature, vol. 367, no. 6464, pp. 645–648, 1994. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Schatton, N. Y. Frank, and M. H. Frank, “Identification and targeting of cancer stem cells,” BioEssays, vol. 31, no. 10, pp. 1038–1049, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. A. H. Yin, S. Miraglia, E. D. Zanjani et al., “AC133, a novel marker for human hematopoietic stem and progenitor cells,” Blood, vol. 90, no. 12, pp. 5002–5012, 1997. View at Google Scholar · View at Scopus
  19. D. Corbeil, A. M. Marzesco, M. Wilsch-Bräuninger, and W. B. Huttner, “The intriguing links between prominin-1 (CD133), cholesterol-based membrane microdomains, remodeling of apical plasma membrane protrusions, extracellular membrane particles, and (neuro)epithelial cell differentiation,” FEBS Letters, vol. 584, no. 9, pp. 1659–1664, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. M. A. Maw, D. Corbeil, J. Koch et al., “A frameshift mutation in prominin (mouse)-like 1 causes human retinal degeneration,” Human Molecular Genetics, vol. 9, no. 1, pp. 27–34, 2000. View at Google Scholar · View at Scopus
  21. V. Tirino, V. Desiderio, R. D'Aquino et al., “Detection and characterization of CD133+ cancer stem cells in human solid tumours,” PLoS ONE, vol. 3, no. 10, article e3469, 2008, Erratum in: PLoS ONE, vol. 3, no. 12, 2008. View at Publisher · View at Google Scholar
  22. V. Tirino, V. Desiderio, F. Paino et al., “Human primary bone sarcomas contain CD133+ cancer stem cells displaying high tumorigenicity in vivo,” FASEB Journal, vol. 25, no. 6, pp. 2022–2030, 2011. View at Publisher · View at Google Scholar
  23. A. S. Adhikari, N. Agarwal, B. M. Wood et al., “CD117 and Stro-1 identify osteosarcoma tumor-initiating cells associated with metastasis and drug resistance,” Cancer Research, vol. 70, no. 11, pp. 4602–4612, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Wang, P. Park, H. Zhang, F. La Marca, and C. Y. Lin, “Prospective identification of tumorigenic osteosarcoma cancer stem cells in OS99-1 cells based on high aldehyde dehydrogenase activity,” International Journal of Cancer, vol. 128, no. 2, pp. 294–303, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Murase, M. Kano, T. Tsukahara et al., “Side population cells have the characteristics of cancer stem-like cells/cancer-initiating cells in bone sarcomas,” British Journal of Cancer, vol. 101, no. 8, pp. 1425–1432, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. M. L. Suvà, N. Riggi, J. C. Stehle et al., “Identification of cancer stem cells in Ewing's sarcoma,” Cancer Research, vol. 69, no. 5, pp. 1776–1781, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Riggi, M. L. Suvà, C. De Vito et al., “EWS-FLI-1 modulates miRNA145 and SOX2 expression to initiate mesenchymal stem cell reprogramming toward Ewing sarcoma cancer stem cells,” Genes and Development, vol. 24, no. 9, pp. 916–932, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. X. Jiang, Y. Gwye, D. Russell et al., “CD133 expression in chemo-resistant Ewing sarcoma cells,” BMC Cancer, vol. 10, article 116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. S. C. Gulati, J. H. Kwon, J. Atzpodien, T. J. Triche, O. M. Colvin, and B. D. Clarkson, “In vitro chemosensitivity of two ewing's sarcoma cell lines: implication for autologous bone marrow transplantation,” Cancer Investigation, vol. 7, no. 5, pp. 411–416, 1989. View at Google Scholar · View at Scopus
  30. D. Walter, S. Satheesha, P. Albrecht et al., “CD133 positive embryonal rhabdomyosarcoma stem-like cell population is enriched in rhabdospheres,” PLoS ONE, vol. 6, no. 5, article e19506, 2011. View at Publisher · View at Google Scholar
  31. J. Terry and T. Nielsen, “Expression of CD133 in synovial sarcoma,” Applied Immunohistochemistry and Molecular Morphology, vol. 18, no. 2, pp. 159–165, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Wu, Q. Wei, V. Utomo et al., “Side population cells isolated from mesenchymal neoplasms have tumor initiating potential,” Cancer Research, vol. 67, no. 17, pp. 8216–8222, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. S. V. Shmelkov, J. M. Butler, A. T. Hooper et al., “CD133 expression is not restricted to stem cells, and both CD133+ and CD133 metastatic colon cancer cells initiate tumors,” Journal of Clinical Investigation, vol. 118, no. 6, pp. 2111–2120, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. M. A. LaBarge and M. J. Bissell, “Is CD133 a marker of metastatic colon cancer stem cells?” Journal of Clinical Investigation, vol. 118, no. 6, pp. 2021–2024, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. O. Awad, J. T. Yustein, P. Shah et al., “High ALDH activity identifies chemotherapy-resistant Ewing's sarcoma stem cells that retain sensitivity to EWS-Fli1 inhibition,” PLoS ONE, vol. 5, no. 11, Article ID e13943, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. M. P. Kim, J. B. Fleming, H. Wang et al., “ALDH activity selectively defines an enhanced tumor-initiating cell population relative to CD133 expression in human pancreatic adenocarcinoma,” PLoS ONE, vol. 6, no. 6, article e20636, 2011. View at Publisher · View at Google Scholar
  37. D. W. Crabb, M. Matsumoto, D. Chang, and M. You, “Overview of the role of alcohol dehydrogenase and aldehyde dehydrogenase and their variants in the genesis of alcohol-related pathology,” Proceedings of the Nutrition Society, vol. 63, no. 1, pp. 49–63, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Armstrong, M. Stojkovic, I. Dimmick et al., “Phenotypic characterization of murine primitive hematopoietic progenitor cells isolated on basis of aldehyde dehydrogenase activity,” Stem Cells, vol. 22, no. 7, pp. 1142–1151, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. D. A. Hess, T. E. Meyerrose, L. Wirthlin et al., “Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity,” Blood, vol. 104, no. 6, pp. 1648–1655, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Cai, A. Cheng, Y. Luo et al., “Membrane properties of rat embryonic multipotent neural stem cells,” Journal of Neurochemistry, vol. 88, no. 1, pp. 212–226, 2004. View at Google Scholar · View at Scopus
  41. J. P. Chute, G. G. Muramoto, J. Whitesides et al., “Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 31, pp. 11707–11712, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. J. E. Russo and J. Hilton, “Characterization of cytosolic aldehyde dehydrogenase from cyclophosphamide resistant L1210 cells,” Cancer Research, vol. 48, no. 11, pp. 2963–2968, 1988. View at Google Scholar · View at Scopus
  43. M. A. Goodell, K. Brose, G. Paradis, A. S. Conner, and R. C. Mulligan, “Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo,” Journal of Experimental Medicine, vol. 183, no. 4, pp. 1797–1806, 1996. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Lipinski, K. Braham, I. Philip et al., “Neuroectoderm-associated antigens on Ewing's sarcoma cell lines,” Cancer Research, vol. 47, no. 1, pp. 183–187, 1987. View at Google Scholar
  45. D. A. Hess, L. Wirthlin, T. P. Craft et al., “Selection based on CD133 and high aldehyde dehydrogenase activity isolates long-term reconstituting human hematopoietic stem cells,” Blood, vol. 107, no. 5, pp. 2162–2169, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Wang, J. Xiao, J. Jiang, and R. Qin, “CD133 and ALDH may be the molecular markers of cholangiocarcinoma stem cells,” International Journal of Cancer, vol. 128, no. 8, pp. 1996–1997, 2011. View at Publisher · View at Google Scholar
  47. L. Lin, J. Fuchs, C. Li, V. Olson, T. Bekaii-Saab, and J. Lin, “STAT3 signaling pathway is necessary for cell survival and tumorsphere forming capacity in ALDH+/CD133+ stem cell-like human colon cancer cells,” Biochemical and Biophysical Research Communications, vol. 416, no. 3-4, pp. 246–251, 2011. View at Publisher · View at Google Scholar
  48. I. A. Silva, S. Bai, K. McLean et al., “Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival,” Cancer Research, vol. 71, no. 11, pp. 3991–4001, 2011. View at Publisher · View at Google Scholar
  49. K. Honoki, “Do stem-like cells play a role in drug resistance of sarcomas?” Expert Review of Anticancer Therapy, vol. 10, no. 2, pp. 261–270, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. C. L. Chaffer, I. Brueckmann, C. Scheel et al., “Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 19, pp. 7950–7955, 2011. View at Publisher · View at Google Scholar