Table of Contents Author Guidelines Submit a Manuscript
Volume 2012, Article ID 359739, 8 pages
Review Article

MicroRNA Involvement in Osteosarcoma

1Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
2Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA 02114, USA

Received 2 December 2011; Revised 26 January 2012; Accepted 27 January 2012

Academic Editor: Alberto Pappo

Copyright © 2012 Eisuke Kobayashi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Osteosarcoma (OS) is the most common primary malignant bone tumor, usually arising in the long bones of adolescents and young adults. While our knowledge of the molecular pathogenesis of OS has increased in recent years, we are still far from a comprehensive understanding of the molecular mechanisms of the disease, such as its tumorigenesis, specific mediators of disease progression, occurrence of chemoresistance, and development of metastasis. After the recent discovery of microRNAs (miRNAs), their critical roles in molecular biological processes have been of great interest in the cancer research field, including research on sarcomas. MiRNAs are highly conserved noncoding RNAs which play important roles as oncogenic or suppressive genes to simultaneously regulate multiple targets. Recent genome-wide screening using miRNA expression profiles has identified specific miRNA expression patterns that are associated with the biological and clinical properties of cancers. Additionally, miRNAs and their target genes or proteins can be potential novel biomarkers or therapeutic targets for cancer. However, there are several challenges that must be addressed in order to translate miRNA-based therapeutics to the clinical setting. In this review, we summarize the current understanding of the roles that miRNAs play in OS, and highlight their potential as biomarkers or therapeutic targets.