Scanning
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
See full report
Acceptance rate52%
Submission to final decision39 days
Acceptance to publication14 days
CiteScore2.700
Journal Citation Indicator-
Impact Factor-

Helium Ion Microscopy and Sectioning of Spider Silk

Read the full article

 Journal profile

Scanning publishes international and interdisciplinary research focused on scanning electron, scanning probe, and scanning optical microscopies, and their advancement and applications.

 Editor spotlight

Chief Editor, Guosong Wu is a Professor at the College of Mechanics & Materials in Hohai University. His research interests include surface engineering, corrosion science, metals and plasma related technologies.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

Microstructure and Mechanical Properties of Gradient Nanostructured Q345 Steel Prepared by Ultrasonic Severe Surface Rolling

In this work, ultrasonic severe surface rolling (USSR), a new surface nanocrystallization technique, is used to prepare gradient nanostructure (GNS) on the commercial Q345 structural steel. The microstructure of the GNS surface layer is characterized by employing EBSD and TEM, and the result indicates that a nanoscale substructure is formed at the topmost surface layer. The substructures are composed of subgrains and dislocation cells and have an average size of 309.4 nm. The GNS surface layer after USSR processing for one pass has a thickness of approximately 300 μm. The uniaxial tensile measurement indicates that the yield strength of the USSR sample improves by 25.1% compared to the as-received sample with slightly decreased ductility. The nanoscale substructure, refined grains, high density of dislocations, and hetero-deformation-induced strengthening are identified as responsible for the enhanced strength. This study provides a feasible approach to improving the mechanical properties of structural steel for wide applications.

Research Article

Detection of Apical Dental Resorption Caused by Endodontic Infection in Mice Using Fluorescence and Bright-Field Microscopy

The aim of this study was to evaluate the sensitivity, specificity, and predictive values of the fluorescence microscopy method in the detection of apical dental reabsorption after induction of apical periodontitis in animal models. Forty-first molars of mice, aged 6 to 8 weeks, had their root canals exposed to the oral environment or were maintained healthy as controls (). After 14 and 42 days, mice were euthanized and tissues were collected for histological evaluation by means of bright field and fluorescence microscopy. The accuracy of fluorescence microscopy in identifying apical external dental resorption was investigated using a diagnostic validation test based on the sensitivity (S) and specificity (E) properties. Bright-field microscopy revealed a higher number of specimens with scores of 1 to 3 - absence of apical dental resorption (; 52%), while fluorescence microscopy revealed a higher number of specimens with scores of 4 to 6 - presence of apical dental resorption (; 66%). Out of 56 specimens, 26 were TP, 11 were FP, and 19 were TN. No FN result was observed. Fluorescence microscopy presented a sensitivity value of 1, similar to the bright-field method, while specificity was lower (0.633). The accuracy of the fluorescent method to detect apical dental resorption was 0.804. Fluorescence microscopy revealed a higher number of false positive apical dental resorption than bright-field microscopy. The detection of apical dental resorption was not impacted by the sensitivity of the method but by its specificity.

Research Article

Characterization of Retained Austenite in Advanced High-Strength Steel

The retained austenite (RA) in advanced high-strength steels directly affects their plasticity. It is very important for the accurate characterization of their content and types. This paper prepared three specimens with three different Mn contents (1.0%, 1.4%, and 1.7%) that are used to obtain high-strength steel by ultrafast cooling heat treatment. The volume content and distribution of the RA were analysed by an X-ray Debye ring measurement system, electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). In addition, the mechanical tensile test provided the tensile properties and elongation of three specimens. It was finally concluded that when the content of Mn increased, the island-type and thin film-type RA both increased, which may effectively improve the plasticity of the martensitic steels.

Research Article

Morphological Characteristics of Young and Old Murine Hematopoietic Stem Cell Niches, as Modeled In Vitro

The hematopoietic stem cell (HSC) niche undergoes detrimental changes with age. The molecular differences between young and old niches are well studied and understood; however, young and old niches have not yet been extensively characterized in terms of morphology. In the present work, a 2D stromal model of young and old HSC niches isolated from bone marrow was investigated using light and scanning electron microscopy (SEM) to characterize cell density after one, two, or three weeks of culturing, cell shape, and cell surface morphological features. Our work is aimed at identifying morphological differences between young and old niche cells that could be used to discriminate between their respective murine HSC niches. The results show several age-specific morphological characteristics. The old niches differ from the young ones in terms of lower cell proliferating capacity, increased cell size with a flattened appearance, increased number of adipocytes, and the presence of tunneling nanotubes. In addition, proliferating cell clusters are present in the young niches but not in the old niches. Together, these characteristics could be used as a relatively simple and reliable tool to discriminate between young and old murine HSC niches and as a complementary approach to imaging with specific cellular markers.

Research Article

A Geometric Morphometrics Approach for Sex Estimation Based on the Orbital Region of Human Skulls from Bosnian Population

Background. Understanding the anatomy and morphological variability of the orbital region is of great importance in clinical practice, forensic medicine, and biological anthropology. Several methods are used to estimate sex based on the skeleton or parts of the skeleton: classic methods and the geometric morphometric method. The objective of this research was to analyse sex estimation of the orbital region on a sample of skulls from a Bosnian population using the geometric morphometric method. Materials and Methods. The research was conducted on three-dimensional models of 211 human adult skulls (139 males and 72 females) from the Osteological Collection at the Faculty of Medicine in Sarajevo. The skulls were recorded using a laser scanner to obtain skull 3D models. We marked 12 landmarks on each model to analyse sexual dimorphism. Landmarks were marked using the program Landmark Editor. After marking the landmarks, we used the MorphoJ program to analyse the morphological variability between male and female orbital regions. Results. After Procrustes superimposition, generating a covariant matrix, and introducing sex as a variable for classification, a discriminant functional analysis (DFA) was applied which determined the estimation for males with 86.33% accuracy and for females with 88.89% based on the form of the orbital region. The results of regression analysis showed that the size of the orbital region has a statistically significant effect on its shape’s sexual dimorphism. After excluding the influence of size and providing DFA, we concluded that sex estimation was possible with 82.01% accuracy for males and 80.55% accuracy for females based on the shape of the orbital region in the examined sample. Conclusion. Sex estimation based on the orbital region was possible with more than 80% accuracy for both sexes, which is a high percentage of correct estimation. Therefore, we recommend using the orbital region of the skull for sex estimation.

Research Article

Effect of Nitrogen Partial Pressure on Structure, Mechanical Property, and Corrosion Behavior of ZrNx Films Prepared by Reactive DC Magnetron Sputtering

ZrNx films were deposited by DC magnetron sputtering with pure Zr target in different nitrogen partial pressure atmospheres (). The structure and composition of the thin films were characterized as a function of using scanning electron microscope, glancing angle X-ray diffraction, and X-ray photoelectron spectroscopy. The hardness, adhesive strength, and corrosion behavior of the coatings were measured by nanoindentation, microscratch, and potentiodynamic measurements in 3.5 wt% NaCl solution. The results show that the structure of the ZrNx films changes from a nearly stoichiometric ZrN with a typical columnar structure to mixed phases composited of ZrN and α-ZrNx with a dense glass structure as increases from 12% to 50%. The mechanical properties including hardness, elastic modulus, and adhesion decrease with increasing due to nonstoichiometric compound and glass phase structure of the coatings, while the dense glass structure significantly improves the corrosion inhibition.

Scanning
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
See full report
Acceptance rate52%
Submission to final decision39 days
Acceptance to publication14 days
CiteScore2.700
Journal Citation Indicator-
Impact Factor-
 Submit

Article of the Year Award: Outstanding research contributions of 2021, as selected by our Chief Editors. Read the winning articles.