Table of Contents Author Guidelines Submit a Manuscript
Schizophrenia Research and Treatment
Volume 2017, Article ID 9760905, 7 pages
https://doi.org/10.1155/2017/9760905
Research Article

Cortical Thinning in Network-Associated Regions in Cognitively Normal and Below-Normal Range Schizophrenia

1York University, Toronto, ON, Canada
2Centre for Addiction and Mental Health, Toronto, ON, Canada
3University of Pittsburgh, Pittsburgh, PA, USA
4McMaster University, Hamilton, ON, Canada

Correspondence should be addressed to R. Walter Heinrichs; ac.ukroy@hretlaw

Received 5 September 2016; Revised 15 January 2017; Accepted 2 February 2017; Published 28 February 2017

Academic Editor: L. Citrome

Copyright © 2017 R. Walter Heinrichs et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. W. Heinrichs and K. K. Zakzanis, “Neurocognitive deficit in schizophrenia: a quantitative review of the evidence,” Neuropsychology, vol. 12, no. 3, pp. 426–445, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. T. W. Weickert, T. E. Goldberg, J. M. Gold, L. B. Bigelow, M. F. Egan, and D. R. Weinberger, “Cognitive impairments in patients with schizophrenia displaying preserved and compromised intellect,” Archives of General Psychiatry, vol. 57, no. 9, pp. 907–913, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. R. W. Heinrichs, F. Pinnock, E. Muharib, L. Hartman, J. Goldberg, and S. McDermid Vaz, “Neurocognitive normality in schizophrenia revisited,” Schizophrenia Research: Cognition, vol. 2, no. 4, pp. 227–232, 2015. View at Publisher · View at Google Scholar · View at Scopus
  4. C. M. Wilk, J. M. Gold, R. P. McMahon, K. Humber, V. N. Iannone, and R. W. Buchanan, “No, it is not possible to be schizophrenic yet neuropsychologically normal,” Neuropsychology, vol. 19, no. 6, pp. 778–786, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Muharib, R. W. Heinrichs, A. Miles, F. Pinnock, S. McDermid Vaz, and N. Ammari, “Community outcome in cognitively normal schizophrenia patients,” Journal of the International Neuropsychological Society, vol. 20, no. 8, pp. 805–811, 2014. View at Publisher · View at Google Scholar · View at Scopus
  6. A. L. Goldman, L. Pezawas, P. Doz et al., “Widespread reductions of cortical thickness in schizophrenia and spectrum disorders and evidence of heritability,” Archives of General Psychiatry, vol. 66, no. 5, pp. 467–477, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. G. R. Kuperberg, M. R. Broome, P. K. McGuire et al., “Regionally localized thinning of the cerebral cortex in schizophrenia,” Archives of General Psychiatry, vol. 60, no. 9, pp. 878–888, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. L. M. Rimol, C. B. Hartberg, R. Nesvåg et al., “Cortical thickness and subcortical volumes in schizophrenia and bipolar disorder,” Biological Psychiatry, vol. 68, no. 1, pp. 41–50, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. L. Wheeler, M. M. Chakravarty, J. P. Lerch et al., “Disrupted prefrontal interhemispheric structural coupling in Schizophrenia related to working memory performance,” Schizophrenia Bulletin, vol. 40, no. 4, pp. 914–924, 2014. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Tandon, P. Nanda, J. L. Padmanabhan et al., “Novel gene-brain structure relationships in psychotic disorder revealed using parallel independent component analyses,” Schizophrenia Research, 2016. View at Publisher · View at Google Scholar
  11. B. E. Wexler, H. Zhu, M. D. Bell et al., “Neuropsychological near normality and brain structure abnormality in schizophrenia,” The American Journal of Psychiatry, vol. 166, no. 2, pp. 189–195, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. L. S. Czepielewski, L. Wang, C. S. Gama, and D. M. Barch, “The relationship of intellectual functioning and cognitive performance to brain structure in schizophrenia,” Schizophrenia Bulletin, vol. 43, no. 2, pp. 355–364, 2017. View at Publisher · View at Google Scholar
  13. D. J. Cobia, J. G. Csernansky, and L. Wang, “Cortical thickness in neuropsychologically near-normal schizophrenia,” Schizophrenia Research, vol. 133, no. 1–3, pp. 68–76, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. N. D. Woodward and S. Heckers, “Brain structure in neuropsychologically defined subgroups of schizophrenia and psychotic bipolar disorder,” Schizophrenia Bulletin, vol. 41, no. 6, pp. 1349–1359, 2015. View at Publisher · View at Google Scholar · View at Scopus
  15. K. H. Nuechterlein, M. F. Green, R. S. Kern et al., “The MATRICS consensus cognitive battery, part 1: test selection, reliability, and validity,” The American Journal of Psychiatry, vol. 165, no. 2, pp. 203–213, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. D. J. Schretlen, S. M. Testas, J. M. Winicki, G. D. Pearlson, and B. Gordon, “Frequency and bases of abnormal performance by healthy adults on neuropsychological testing,” Journal of the International Neuropsychological Society, vol. 14, no. 3, pp. 436–445, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. V. Menon, “Large-scale brain networks and psychopathology: a unifying triple network model,” Trends in Cognitive Sciences, vol. 15, no. 10, pp. 483–506, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Fernández-Espejo, A. Soddu, D. Cruse et al., “A role for the default mode network in the bases of disorders of consciousness,” Annals of Neurology, vol. 72, no. 3, pp. 335–343, 2012. View at Publisher · View at Google Scholar
  19. L. Culpepper, “Neuroanatomy and physiology of cognition,” The Journal of Clinical Psychiatry, vol. 76, no. 7, article no. e900, 2015. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Downar, A. P. Crawley, D. J. Mikulis, and K. D. Davis, “A cortical network sensitive to stimulus salience in a neutral behavioral context across multiple sensory modalities,” Journal of Neurophysiology, vol. 87, no. 1, pp. 615–620, 2002. View at Google Scholar · View at Scopus
  21. L. Palaniyappan, P. Mallikarjun, V. Joseph, T. P. White, and P. F. Liddle, “Regional contraction of brain surface area involves three large-scale networks in schizophrenia,” Schizophrenia Research, vol. 129, no. 2-3, pp. 163–168, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. M. B. First, M. Gibbon, R. L. Spitzer, J. B. W. Williams, and L. S. Benjamin, Structured Clinical Interview for DSM-IV Axis I Disorders: Non-Patient Edition (SCID-I/NP), Biometrics Research; New York State Psychiatric Institute, New York, NY, USA, 1996.
  23. W. S. Kremen, L. J. Seidman, S. V. Faraone, R. Toomey, and M. T. Tsuang, “The paradox of normal neuropsychological function in schizophrenia,” Journal of Abnormal Psychology, vol. 109, no. 4, pp. 743–752, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. S. R. Kay, L. A. Opler, and J. P. Lindenmayer, “The Positive and Negative Syndrome Scale (PANSS): rationale and standardisation,” The British Journal of Psychiatry. Supplement, no. 7, pp. 59–67, 1989. View at Google Scholar · View at Scopus
  25. A. M. Dale, “Optimal experimental design for event-related fMRI,” Human Brain Mapping, vol. 8, no. 2-3, pp. 109–114, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Fischl, M. I. Sereno, R. B. H. Tootell, and A. M. Dale, “High-resolution intersubject averaging and a coordinate system for the cortical surface,” Human Brain Mapping, vol. 8, no. 4, pp. 272–284, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Destrieux, B. Fischl, A. Dale, and E. Halgren, “Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature,” NeuroImage, vol. 53, no. 1, pp. 1–15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Fischl, A. Van Der Kouwe, C. Destrieux et al., “Automatically parcellating the human cerebral cortex,” Cerebral Cortex, vol. 14, no. 1, pp. 11–22, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. B. W. McMenamin, S. J. E. Langeslag, M. Sirbu, S. Padmala, and L. Pessoa, “Network organization unfolds over time during periods of anxious anticipation,” Journal of Neuroscience, vol. 34, no. 34, pp. 11261–11273, 2014. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Najafi, B. W. McMenamin, J. Z. Simon, and L. Pessoa, “Overlapping communities reveal rich structure in large-scale brain networks during rest and task conditions,” NeuroImage, vol. 135, pp. 92–106, 2016. View at Publisher · View at Google Scholar · View at Scopus
  31. M. A. Lindquist and A. Mejia, “Zen and the art of multiple comparisons,” Psychosomatic Medicine, vol. 77, no. 2, pp. 114–125, 2015. View at Publisher · View at Google Scholar · View at Scopus
  32. C. M. Bennett, G. L. Wolford, and M. B. Miller, “The principled control of false positives in neuroimaging,” Social Cognitive and Affective Neuroscience, vol. 4, no. 4, pp. 417–422, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Eklund, T. E. Nichols, and H. Knutsson, “Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates,” Proceedings of the National Academy of Sciences of the United States of America, vol. 113, no. 28, pp. 7900–7905, 2016. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Meyer, F. Liem, S. Hirsiger, L. Jäncke, and J. Hänggi, “Cortical surface area and cortical thickness demonstrate differential structural asymmetry in auditory-related areas of the human cortex,” Cerebral Cortex, vol. 24, no. 10, pp. 2541–2552, 2014. View at Publisher · View at Google Scholar · View at Scopus
  35. M. S. Panizzon, C. Fennema-Notestine, L. T. Eyler et al., “Distinct genetic influences on cortical surface area and cortical thickness,” Cerebral Cortex, vol. 19, no. 11, pp. 2728–2735, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. W. M. Tempelaar, F. Termorshuizen, J. H. MacCabe, M. P. Boks, and R. S. Kahn, “Educational achievement in psychiatric patients and their siblings: a register-based study in 30 000 individuals in The Netherlands,” Psychological Medicine, pp. 1–9, 2016. View at Publisher · View at Google Scholar
  37. A. Soundy, B. Stubbs, C. Roskell, S. E. Williams, A. Fox, and D. Vancampfort, “Identifying the facilitators and processes which influence recovery in individuals with schizophrenia: a systematic review and thematic synthesis,” Journal of Mental Health, vol. 24, no. 2, pp. 103–110, 2015. View at Publisher · View at Google Scholar · View at Scopus
  38. D. C. Glahn, A. R. Laird, I. Ellison-Wright et al., “Meta-analysis of gray matter anomalies in schizophrenia: application of anatomic likelihood estimation and network analysis,” Biological Psychiatry, vol. 64, no. 9, pp. 774–781, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. J. M. Sheffield and D. M. Barch, “Cognition and resting-state functional connectivity in schizophrenia,” Neuroscience and Biobehavioral Reviews, vol. 61, pp. 108–120, 2016. View at Publisher · View at Google Scholar · View at Scopus
  40. M. de Gracia Dominguez, W. Viechtbauer, C. J. P. Simons, J. van Os, and L. Krabbendam, “Are psychotic psychopathology and neurocognition orthogonal? a systematic review of their associations,” Psychological Bulletin, vol. 135, no. 1, pp. 157–171, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. A. C. Evans, “Networks of anatomical covariance,” NeuroImage, vol. 80, pp. 489–504, 2013. View at Publisher · View at Google Scholar · View at Scopus
  42. N. Y. Shin, Y. S. Shin, P. H. Lee et al., “Different functional and microstructural changes depending on duration of mild cognitive impairment in parkinson disease,” American Journal of Neuroradiology, vol. 37, no. 5, pp. 897–903, 2016. View at Google Scholar
  43. A. Sekar, A. R. Bialas, H. De Rivera et al., “Schizophrenia risk from complex variation of complement component 4,” Nature, vol. 530, no. 7589, pp. 177–183, 2016. View at Publisher · View at Google Scholar · View at Scopus
  44. T. D. Cannon, Y. Chung, G. He et al., “Progressive reduction in cortical thickness as psychosis develops: a multisite longitudinal neuroimaging study of youth at elevated clinical risk,” Biological Psychiatry, vol. 77, no. 2, pp. 147–157, 2015. View at Publisher · View at Google Scholar · View at Scopus