Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2010, Article ID 503593, 8 pages
http://dx.doi.org/10.4061/2010/503593
Review Article

Culture and Use of Mesenchymal Stromal Cells in Phase I and II Clinical Trials

1EFS-PM, Laboratoire d'Ingénierie Cellulaire, GECSoM, 75 rue de Lisieux, 31300 Toulouse, France
2Service Recherche, EFS-CA, GECSoM, 2 boulevard Tonnellé BP52009, 37020 Tours Cedex 1, France
3UMR 5241 Métabolisme, Plasticité et Mitochondrie, BP84225, 31432 Toulouse Cedex 4, France
4Service de Cardiologie, CHU Rangueil, TSA 50032 1 avenue Jean Poulhes, 31059 Toulouse Cedex 9, France
5Service de Médecine Vasculaire, CHU Rangueil, TSA 50032 1 avenue Jean Poulhes, 31059 Toulouse Cedex 9, France

Received 9 June 2010; Revised 16 August 2010; Accepted 19 September 2010

Academic Editor: J. Gimble

Copyright © 2010 Bourin Philippe et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Owen and A. J. Friedenstein, “Stromal stem cells: marrow-derived osteogenic precursors,” Ciba Foundation Symposium, vol. 136, pp. 42–60, 1988. View at Google Scholar · View at Scopus
  2. A. I. Caplan, “Mesenchymal stem cells,” Journal of Orthopaedic Research, vol. 9, no. 5, pp. 641–650, 1991. View at Google Scholar · View at Scopus
  3. E. M. Horwitz, K. Le Blanc, M. Dominici et al., “Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement,” Cytotherapy, vol. 7, no. 5, pp. 393–395, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Sensebé, M. Krampera, H. Schrezenmeier, P. Bourin, and R. Giordano, “Mesenchymal stem cells for clinical application,” Vox Sang, vol. 98, pp. 93–107, 2010. View at Google Scholar
  5. A. I. Caplan and J. E. Dennis, “Mesenchymal stem cells as trophic mediators,” Journal of Cellular Biochemistry, vol. 98, no. 5, pp. 1076–1084, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. H. M. Lazarus, S. E. Haynesworth, S. L. Gerson, N. S. Rosenthal, and A. I. Caplan, “Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use,” Bone Marrow Transplantation, vol. 16, no. 4, pp. 557–564, 1995. View at Google Scholar · View at Scopus
  7. E. M. Horwitz, P. L. Gordon, W. K. K. Koo et al., “Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 13, pp. 8932–8937, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. O. N. Koç, J. Day, M. Nieder, S. L. Gerson, H. M. Lazarus, and W. Krivit, “Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH),” Bone Marrow Transplantation, vol. 30, no. 4, pp. 215–222, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. S.-L. Chen, W.-W. Fang, F. Ye et al., “Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction,” American Journal of Cardiology, vol. 94, no. 1, pp. 92–95, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Le Blanc, F. Frassoni, L. Ball et al., “Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study,” The Lancet, vol. 371, no. 9624, pp. 1579–1586, 2008. View at Publisher · View at Google Scholar
  11. R. Quarto, M. Mastrogiacomo, R. Cancedda et al., “Repair of large bone defects with the use of autologous bone marrow stromal cells,” New England Journal of Medicine, vol. 344, no. 5, pp. 385–386, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. C. A. Vacanti, L. J. Bonassar, M. P. Vacanti, and J. Shufflebarger, “Replacement of an avulsed phalanx with tissue-engineered bone,” New England Journal of Medicine, vol. 344, no. 20, pp. 1511–1514, 2001, Erratum in: New England Journal of Medicine. vol. 345, no. 9, p. 704, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Crisan, S. Yap, L. Casteilla et al., “A perivascular origin for mesenchymal stem cells in multiple human organs,” Cell Stem Cell, vol. 3, no. 3, pp. 301–313, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. L. da Silva Meirelles, P. C. Chagastelles, and N. B. Nardi, “Mesenchymal stem cells reside in virtually all post-natal organs and tissues,” Journal of Cell Science, vol. 119, no. 11, pp. 2204–2213, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. P. A. Zuk, M. Zhu, H. Mizuno et al., “Multilineage cells from human adipose tissue: implications for cell-based therapies,” Tissue Engineering, vol. 7, no. 2, pp. 211–228, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Noël, D. Caton, S. Roche et al., “Cell specific differences between human adipose-derived and mesenchymal-stromal cells despite similar differentiation potentials,” Experimental Cell Research, vol. 314, no. 7, pp. 1575–1584, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. V. Planat-Benard, J.-S. Silvestre, B. Cousin et al., “Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives,” Circulation, vol. 109, no. 5, pp. 656–663, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. D. García-Olmo, M. García-Arranz, D. Herreros, I. Pascual, C. Peiro, and J. A. Rodríguez-Montes, “A phase I clinical trial of the treatment of crohn's fistula by adipose mesenchymal stem cell transplantation,” Diseases of the Colon and Rectum, vol. 48, no. 7, pp. 1416–1423, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Garcia-Olmo, D. Herreros, I. Pascual et al., “Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase ii clinical trial,” Diseases of the Colon and Rectum, vol. 52, no. 1, pp. 79–86, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. J. L. Spees, C. A. Gregory, H. Singh et al., “Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy,” Molecular Therapy, vol. 9, no. 5, pp. 747–756, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Yamaguchi, F. Hirayama, S. Wakamoto et al., “Bone marrow stromal cells prepared using AB serum and bFGF for hematopoietic stem cells expansion,” Transfusion, vol. 42, no. 7, pp. 921–927, 2002. View at Google Scholar · View at Scopus
  22. K. A. Schwartz, G. Lu, J. E. Trosko, and C. C. Chang, “Serum from outdated human platelet concentrates: an alternative supplement for tissue (fibroblast) culture media,” American Journal of Hematology, vol. 17, no. 1, pp. 23–27, 1984. View at Google Scholar · View at Scopus
  23. A. Kocaoemer, S. Kern, H. Klüter, and K. Bieback, “Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue,” Stem Cells, vol. 25, no. 5, pp. 1270–1278, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Lucarelli, A. Beccheroni, D. Donati et al., “Platelet-derived growth factors enhance proliferation of human stromal stem cells,” Biomaterials, vol. 24, no. 18, pp. 3095–3100, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Bieback, A. Hecker, A. Kocaömer et al., “Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow,” Stem Cells, vol. 27, no. 9, pp. 2331–2341, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. D. P. Lennon, S. E. Haynesworth, R. G. Young, J. E. Dennis, and A. I. Caplan, “A chemically defined medium supports in vitro proliferation and maintains the osteochondral potential of rat marrow-derived mesenchymal stem cells,” Experimental Cell Research, vol. 219, no. 1, pp. 211–222, 1995. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Gronthos and P. J. Simmons, “The growth factor requirements of STRO-1-positive human bone marrow stromal precursors under serum-deprived conditions in vitro,” Blood, vol. 85, no. 4, pp. 929–940, 1995. View at Google Scholar · View at Scopus
  28. D. Rubio, J. Garcia-Castro, M. C. Martín et al., “Spontaneous human adult stem cell transformation,” Cancer Research, vol. 65, no. 8, pp. 3035–3039, 2005. View at Google Scholar · View at Scopus
  29. G. V. Røsland, A. Svendsen, A. Torsvik et al., “Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation,” Cancer Research, vol. 69, no. 13, pp. 5331–5339, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Rubio, S. Garcia, T. De la Cueva et al., “Human mesenchymal stem cell transformation is associated with a mesenchymal-epithelial transition,” Experimental Cell Research, vol. 314, no. 4, pp. 691–698, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Garcia, M. C. Martín, R. de la Fuente, J. C. Cigudosa, J. Garcia-Castro, and A. Bernad, “Pitfalls in spontaneous in vitro transformation of human mesenchymal stem cells,” Experimental Cell Research, vol. 316, no. 9, pp. 1648–1650, 2010. View at Publisher · View at Google Scholar
  32. A. Torsvik, G. V. Røsland, A. Svendsen et al., “Spontaneous malignant transformation of human mesenchymal stem cells reflects cross-contamination: putting the research field on track—letter,” Cancer Research, vol. 70, no. 15, pp. 6393–6396, 2010. View at Publisher · View at Google Scholar
  33. M. E. Bernardo, N. Zaffaroni, F. Novara et al., “Human bone marrow-derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms,” Cancer Research, vol. 67, no. 19, pp. 9142–9149, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Kim, J. W. Kang, J. H. Park et al., “Biological characterization of long-term cultured human mesenchymal stem cells,” Archives of Pharmacal Research, vol. 32, no. 1, pp. 117–126, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Tarte, J. Gaillard, J. -J. Lataillade et al., “Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation,” Blood, vol. 115, no. 8, pp. 1549–1553, 2010. View at Publisher · View at Google Scholar
  36. K. Le Blanc, I. Rasmusson, B. Sundberg et al., “Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells,” Lancet, vol. 363, no. 9419, pp. 1439–1441, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Martin, J. Uberti, R. Soiffer et al., “Prochymal® improves response rates in patients with steroid-refractory acute graft-versus-host disease involving the liver and gut: results of a randomized, placebo-controlled, multicentre phase III trial in GvHDP,” Communication Vienna, EBMT, 2010.
  38. H. M. Lazarus, O. N. Koc, S. M. Devine et al., “Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients,” Biology of Blood and Marrow Transplantation, vol. 11, no. 5, pp. 389–398, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Taupin, “OTI-010 Osiris Therapeutics/JCR Pharmaceuticals,” Current Opinion in Investigational Drugs, vol. 7, no. 5, pp. 473–481, 2006. View at Google Scholar · View at Scopus
  40. H. Ning, F. Yang, M. Jiang et al., “The correlation between cotransplantation of mesenchymal stem cells and higher recurrence rate in hematologic malignancy patients: outcome of a pilot clinical study,” Leukemia, vol. 22, no. 3, pp. 593–599, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. J. G. Shake, P. J. Gruber, W. A. Baumgartner et al., “Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects,” Annals of Thoracic Surgery, vol. 73, no. 6, pp. 1919–1926, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. B. Léobon, J. Roncalli, C. Joffre et al., “Adipose-derived cardiomyogenic cells: in vitro expansion and functional improvement in a mouse model of myocardial infarction,” Cardiovascular Research, vol. 83, no. 4, pp. 757–767, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. S.-L. Chen, W.-W. Fang, F. Ye et al., “Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction,” American Journal of Cardiology, vol. 94, no. 1, pp. 92–95, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. J. M. Hare, J. H. Traverse, T. D. Henry et al., “A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction,” Journal of the American College of Cardiology, vol. 54, no. 24, pp. 2277–2286, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. TransAtlantic inter-Society Consensus (TASC), “Definition and nomenclature for chronic critical limb ischemia,” Journal of Vascular Surgery, vol. 31, pp. S168–S173, 2000. View at Google Scholar
  46. E. Tateishi-Yuyama, H. Matsubara, T. Murohara et al., “Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial,” Lancet, vol. 360, no. 9331, pp. 427–435, 2002. View at Publisher · View at Google Scholar
  47. S. Matoba, T. Tatsumi, T. Murohara et al., “TACT Follow-up Study Investigators. Long-term clinical outcome after intramuscular implantation of bone marrow mononuclear cells (Therapeutic Angiogenesis by Cell Transplantation [TACT] trial) in patients with chronic limb ischemia,” American Heart Journal, vol. 156, no. 5, pp. 1010–1018, 2008. View at Publisher · View at Google Scholar
  48. B. J. Jones and S. J. McTaggart, “Immunosuppression by mesenchymal stromal cells: from culture to clinic,” Experimental Hematology, vol. 36, no. 6, pp. 733–741, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Uccelli, L. Moretta, and V. Pistoia, “Mesenchymal stem cells in health and disease,” Nature Reviews Immunology, vol. 8, no. 9, pp. 726–736, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. W. Dai, S. L. Hale, B. J. Martin et al., “Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short-and long-term effects,” Circulation, vol. 112, no. 2, pp. 214–223, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. D. Wolf, A. Reinhard, U. Krause et al., “Stem cell therapy improves myocardial perfusion and cardiac synchronicity: new application for echocardiography,” Journal of the American Society of Echocardiography, vol. 20, no. 5, pp. 512–520, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. L. C. Amado, K. H. Schuleri, A. P. Saliaris et al., “Multimodality Noninvasive Imaging Demonstrates In Vivo Cardiac Regeneration After Mesenchymal Stem Cell Therapy,” Journal of the American College of Cardiology, vol. 48, no. 10, pp. 2116–2124, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Imanishi, A. Saito, H. Komoda et al., “Allogenic mesenchymal stem cell transplantation has a therapeutic effect in acute myocardial infarction in rats,” Journal of Molecular and Cellular Cardiology, vol. 44, no. 4, pp. 662–671, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. Y.-Y. Du, S.-H. Zhou, T. Zhou et al., “Immuno-inflammatory regulation effect of mesenchymal stem cell transplantation in a rat model of myocardial infarction,” Cytotherapy, vol. 10, no. 5, pp. 469–478, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Alvarez-Dolado, R. Pardal, J. M. Garcia-Verdugo et al., “Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes,” Nature, vol. 425, no. 6961, pp. 968–973, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Inoue, F. C. Popp, G. E. Koehl et al., “Immunomodulatory effects of mesenchymal stem cells in a rat organ transplant model,” Transplantation, vol. 81, no. 11, pp. 1589–1595, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. H. P. Zhou, D. H. Yi, S. Q. Yu et al., “Administration of donor-derived mesenchymal stem cells can prolong the survival of rat cardiac allograft,” Transplantation Proceedings, vol. 38, no. 9, pp. 3046–3051, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. B. Puissant, C. Barreau, P. Bourin et al., “Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells,” British Journal of Haematology, vol. 129, no. 1, pp. 118–129, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. R. Yañez, M. L. Lamana, J. García-Castro, I. Colmenero, M. Ramírez, and J. A. Bueren, “Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease,” Stem Cells, vol. 24, no. 11, pp. 2582–2591, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. M. J. Hoogduijn, M. J. Crop, A. M. A. Peeters et al., “Human heart, spleen, and perirenal fat-derived mesenchymal stem cells have immunomodulatory capacities,” Stem Cells and Development, vol. 16, no. 4, pp. 597–604, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Wolbank, A. Peterbauer, M. Fahrner et al., “Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: a comparison with human mesenchymal stem cells from adipose tissue,” Tissue Engineering, vol. 13, no. 6, pp. 1173–1183, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. K.-S. Cho, H.-K. Park, H.-Y. Park et al., “IFATS collection: immunomodulatory effects of adipose tissue-derived stem cells in an allergic rhinitis mouse model,” Stem Cells, vol. 27, no. 1, pp. 259–265, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. I. Bochev, G. Elmadjian, D. Kyurkchiev et al., “Mesenchymal stem cells from human bone marrow or adipose tissue differently modulate mitogen-stimulated B-cell immunoglobulin production in vitro,” Cell Biology International, vol. 32, no. 4, pp. 384–393, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. C. Mias, E. Trouche, M.-H. Seguelas et al., “Ex vivo pretreatment with melatonin improves survival, proangiogenic/ mitogenic activity, and efficiency of mesenchymal stem cells injected into ischemic kidney,” Stem Cells, vol. 26, no. 7, pp. 1749–1757, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. Y. Miyahara, N. Nagaya, M. Kataoka et al., “Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction,” Nature Medicine, vol. 12, no. 4, pp. 459–465, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. T. E. Meyerrose, D. A. De Ugarte, A. A. Hofling et al., “In vivo distribution of human adipose-derived mesenchymal stem cells in novel xenotransplantation models,” Stem Cells, vol. 25, no. 1, pp. 220–227, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. R. Madonna, L. Rinaldi, C. Rossi, Y.-J. Geng, and R. De Caterina, “Prostacyclin improves transcoronary myocardial delivery of adipose tissue-derived stromal cells,” European Heart Journal, vol. 27, no. 17, pp. 2054–2061, 2006. View at Publisher · View at Google Scholar · View at Scopus