Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2010, Article ID 765167, 5 pages
http://dx.doi.org/10.4061/2010/765167
Review Article

Bone Marrow-Derived Mesenchymal Stem Cells: Current and Future Applications in the Urinary Bladder

Division of Pediatric Urology, Monroe Carell, Jr. Children's Hospital, Vanderbilt University Medical Center, Nashville, TN 37232, USA

Received 15 September 2010; Accepted 14 December 2010

Academic Editor: P. Jendelova

Copyright © 2010 Beth A. Drzewiecki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Gnecchi and L. G. Melo, “Bone marrow-derived mesenchymal stem cells: isolation, expansion, characterization, viral transduction, and production of conditioned medium,” Methods in Molecular Biology, vol. 482, pp. 281–294, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. A. J. Friedenstein, U. F. Deriglasova, and N. N. Kulagina, “Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method,” Experimental Hematology, vol. 2, no. 2, pp. 83–92, 1974. View at Google Scholar · View at Scopus
  3. A. J. Friedenstein, R. K. Chailakhyan, and U. V. Gerasimov, “Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers,” Cell and Tissue Kinetics, vol. 20, no. 3, pp. 263–272, 1987. View at Google Scholar · View at Scopus
  4. R. N. Yu and C. R. Estrada, “Stem cells: a review and implications for urology,” Urology, vol. 75, no. 3, pp. 664–670, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. A. Spagnoli, L. Longobardi, and L. O'Rear, “Cartilage disorders: potential therapeutic use of mesenchymal stem cells,” Endocrine Development, vol. 9, pp. 17–30, 2005. View at Google Scholar · View at Scopus
  6. M. F. Pittenger, A. M. Mackay, and A. M. Mackay, “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Schipani and H. M. Kronenberg, Adult Mesenchymal Stem Cells, StemBook, 2008.
  8. D. J. Prockop, “Marrow stromal cells as stem cells for nonhematopoietic tissues,” Science, vol. 276, no. 5309, pp. 71–74, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Tian, S. Bharadwaj, Y. Liu, P. X. Ma, A. Atala, and Y. Zhang, “Differentiation of human bone marrow mesenchymal stem cells into bladder cells: potential for urological tissue engineering,” Tissue Engineering A, vol. 16, no. 5, pp. 1769–1779, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. A. C. M. Assis, J. L. Carvalho, and J. L. Carvalho, “Time-dependent migration of systemically delivered bone marrow mesenchymal stem cells to the infarcted heart,” Cell Transplantation, vol. 19, no. 2, pp. 219–230, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. J. Tolar, K. le Blanc, A. Keating, and B. R. Blazar, “Concise review: hitting the right spot with mesenchymal stromal cells,” Stem Cells, vol. 28, no. 8, pp. 1446–1455, 2010. View at Publisher · View at Google Scholar · View at PubMed
  12. E. M. Horwitz, K. Le Blanc, and K. Le Blanc, “Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement,” Cytotherapy, vol. 7, no. 5, pp. 393–395, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. J. Reiser, X. Y. Zhang, C. S. Hemenway, D. Mondal, L. Pradhan, and V. F. La Russa, “Potential of mesenchymal stem cells in gene therapy approaches for inherited and acquired diseases,” Expert Opinion on Biological Therapy, vol. 5, no. 12, pp. 1571–1584, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. E. K. Sage, M. R. Loebinger, J. Polak, and S. M. Janes, “The role of bone marrow-derived stem cells in lung regeneration and repair,” 2008. View at Google Scholar
  15. D. C. Zhao, J. X. Lei, R. Chen, W. H. Yu, X. M. Zhang, S. N. Li, and P. Xiang, “Bone marrow-derived mesenchymal stem cells protect against experimental liver fibrosis in rats,” World Journal of Gastroenterology, vol. 11, no. 22, pp. 3431–3440, 2005. View at Google Scholar · View at Scopus
  16. H. Qian, H. Yang, and H. Yang, “Bone marrow mesenchymal stem cells ameliorate rat acute renal failure by differentiation into renal tubular epithelial-like cells,” International Journal of Molecular Medicine, vol. 22, no. 3, pp. 325–332, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. R. H. Miller, L. Bai, D. P. Lennon, and A. I. Caplan, “The potential of mesenchymal stem cells for neural repair,” Discovery Medicine, vol. 9, no. 46, pp. 236–242, 2010. View at Google Scholar · View at Scopus
  18. D. J. Prockop, D. J. Kota, N. Bazhanov, and R. L. Reger, “Evolving paradigms for repair of tissues by adult stem/progenitor cells (MSCs),” Journal of Cellular and Molecular Medicine, vol. 14, no. 9, pp. 2190–2199, 2010. View at Publisher · View at Google Scholar · View at PubMed
  19. L. A. Ortiz, F. Gambelli, C. McBride, D. Gaupp, M. Baddoo, N. Kaminski, and D. G. Phinney, “Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 14, pp. 8407–8411, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. C. P. Hofstetter, E. J. Schwarz, D. Hess, J. Widenfalk, A. El Manira, D. J. Prockop, and L. Olson, “Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 4, pp. 2199–2204, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. V. Sordi, “Mesenchymal stem cell homing capacity,” Transplantation, vol. 87, no. 9, pp. S42–45, 2009. View at Google Scholar · View at Scopus
  22. A. I. Caplan, “Adult mesenchymal stem cells for tissue engineering versus regenerative medicine,” Journal of Cellular Physiology, vol. 213, no. 2, pp. 341–347, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. D. J. Prockop, “Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms,” Molecular Therapy, vol. 17, no. 6, pp. 939–946, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. A. I. Caplan and J. E. Dennis, “Mesenchymal stem cells as trophic mediators,” Journal of Cellular Biochemistry, vol. 98, no. 5, pp. 1076–1084, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. A. Uccelli, L. Moretta, and V. Pistoia, “Mesenchymal stem cells in health and disease,” Nature Reviews Immunology, vol. 8, no. 9, pp. 726–736, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. G. Ren, L. Zhang, and L. Zhang, “Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide,” Cell Stem Cell, vol. 2, no. 2, pp. 141–150, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. A. Kanematsu, S. Yamamoto, and S. Yamamoto, “Induction of smooth muscle cell-like phenotype in marrow-derived cells among regenerating urinary bladder smooth muscle cells,” American Journal of Pathology, vol. 166, no. 2, pp. 565–573, 2005. View at Google Scholar · View at Scopus
  28. A. K. Sharma, N. J. Fuller, and N. J. Fuller, “Defined populations of bone marrow derived mesenchymal stem and endothelial progenitor cells for bladder regeneration,” Journal of Urology, vol. 182, no. 4, pp. 1898–1905, 2009. View at Google Scholar · View at Scopus
  29. J. J. Ross, Z. Hong, and Z. Hong, “Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells,” Journal of Clinical Investigation, vol. 116, no. 12, pp. 3139–3149, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. L. Baskin, M. DiSandro, Y. Li, W. Li, S. Hayward, and G. Cunha, “Mesenchymal-epithelial interactions in bladder smooth muscle development: effects of the local tissue environment,” Journal of Urology, vol. 165, no. 4, pp. 1283–1288, 2001. View at Google Scholar · View at Scopus
  31. G. Anumanthan, J. H. Makari, and J. H. Makari, “Directed differentiation of bone marrow derived mesenchymal stem cells into bladder urothelium,” Journal of Urology, vol. 180, no. 4, pp. 1778–1783, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. G. Wang, B. A. Bunnell, and B. A. Bunnell, “Adult stem cells from bone marrow stroma differentiate into airway epithelial cells: potential therapy for cystic fibrosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 1, pp. 186–191, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. D. Shukla, G. N. Box, R. A. Edwards, and D. R. Tyson, “Bone marrow stem cells for urologic tissue engineering,” World Journal of Urology, vol. 26, no. 4, pp. 341–349, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. H. Tian, S. Bharadwaj, Y. Liu, H. Ma, P. X. Ma, A. Atala, and Y. Zhang, “Myogenic differentiation of human bone marrow mesenchymal stem cells on a 3D nano fibrous scaffold for bladder tissue engineering,” Biomaterials, vol. 31, no. 5, pp. 870–877, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. A. K. Sharma, P. V. Hota, and P. V. Hota, “Urinary bladder smooth muscle regeneration utilizing bone marrow derived mesenchymal stem cell seeded elastomeric poly(1,8-octanediol-co-citrate) based thin films,” Biomaterials, vol. 31, no. 24, pp. 6207–6217, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. Y. Zhang, H. K. Lin, D. Frimberger, R. B. Epstein, and B. P. Kropp, “Growth of bone marrow stromal cells on small intestinal submucosa: an alternative cell source for tissue engineered bladder,” BJU International, vol. 96, no. 7, pp. 1120–1125, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. Y. Zhang, B. P. Kropp, H. K. Lin, R. Cowan, and E. Y. Cheng, “Bladder regeneration with cell-seeded small intestinal submucosa,” Tissue Engineering, vol. 10, no. 1-2, pp. 181–187, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. S. Y. Chung, N. P. Krivorov, and N. P. Krivorov, “Bladder reconstitution with bone marrow derived stem cells seeded on small intestinal submucosa improves morphological and molecular composition,” Journal of Urology, vol. 174, no. 1, pp. 353–359, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. S. T. Tanaka, M. Martinez-Ferrer, and M. Martinez-Ferrer, “Recruitment of bone marrow derived cells to the bladder after bladder outlet obstruction,” Journal of Urology, vol. 182, no. 4, pp. 1769–1774, 2009. View at Google Scholar · View at Scopus
  40. P. de Coppi, A. Callegari, and A. Callegari, “Amniotic fluid and bone marrow derived mesenchymal stem cells can be converted to smooth muscle cells in the cryo-injured rat bladder and prevent compensatory hypertrophy of surviving smooth muscle cells,” Journal of Urology, vol. 177, no. 1, pp. 369–376, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. F. Anjos-Afonso, E. K. Siapati, and D. Bonnet, “In vivo contribution of murine mesenchymal stem cells into multiple cell-types under minimal damage conditions,” Journal of Cell Science, vol. 117, no. 23, pp. 5655–5664, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. C. Dwyer RM, S. Khan, F. P. Barry, T. O'Brien, and M. J. Kerin, “Advances in mesenchymal stem cell-mediated gene therapy for cancer,” Stem Cell Research & Therapy, vol. 1, no. 3, article 25, 2010. View at Google Scholar
  43. M. Suzuki, J. McHugh, and J. McHugh, “Direct muscle delivery of GDNF with human mesenchymal stem cells improves motor neuron survival and function in a rat model of familial ALS,” Molecular Therapy, vol. 16, no. 12, pp. 2002–2010, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. J. Xu, C. R. Woods, A. L. Mora, R. Joodi, K. L. Brigham, S. Iyer, and M. Rojas, “Prevention of endotoxin-induced systemic response by bone marrow-derived mesenchymal stem cells in mice,” American Journal of Physiology - Lung Cellular and Molecular Physiology, vol. 293, no. 1, pp. L131–L141, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. J. Xu, J. Qu, L. Cao, Y. Sai, C. Chen, L. He, and L. Yu, “Mesenchymal stem cell-based angiopoietin-1 gene therapy for acute lung injury induced by lipopolysaccharide in mice,” Journal of Pathology, vol. 214, no. 4, pp. 472–481, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus