Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2011, Article ID 193918, 3 pages
http://dx.doi.org/10.4061/2011/193918
Editorial

Stem Cells in Heart Failure

1Cardioimmunology, Cardiovascular Research, Institute of Physiology, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
2NIH/NIA/GRC/LCS, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
3Department of Cardiology, University Hospital, Rämistrasse 100, 8091 Zurich, Switzerland
4Division of Cardiology, Medical University of Silesia, 40-583 Katowice, Poland

Received 17 October 2011; Accepted 17 October 2011

Copyright © 2011 Gabriela Kania et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Anversa, J. Kajstura, and A. Leri, “If I can stop one heart from breaking,” Circulation, vol. 115, no. 7, pp. 829–832, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. C. E. Murry, M. H. Soonpaa, H. Reinecke et al., “Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts,” Nature, vol. 428, no. 6983, pp. 664–668, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. M. A. Laflamme and C. E. Murry, “Regenerating the heart,” Nature Biotechnology, vol. 23, no. 7, pp. 845–856, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. K. R. Boheler, “Pluripotency of human embryonic and induced pluripotent stem cells for cardiac and vascular regeneration,” Thrombosis and Haemostasis, vol. 104, no. 1, pp. 23–29, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. K. R. Boheler, R. N. Joodi, H. Qiao et al., “Embryonic stem cell-derived cardiomyocyte heterogeneity and the isolation of immature and committed cells for cardiac remodeling and regeneration,” Stem Cells International, vol. 2011, Article ID 214203, 10 pages, 2011. View at Publisher · View at Google Scholar
  6. S. Schmitteckert, C. Ziegler, L. Kartes, and A. Rolletschek, “Transcription factor lbx1 expression in mouse embryonic stem cell-derived phenotypes,” Stem Cells International, vol. 2011, Article ID 130970, 7 pages, 2011. View at Publisher · View at Google Scholar
  7. H. Brohmann, K. Jagla, and C. Birchmeier, “The role of Lbx1 in migration of muscle precursor cells,” Development, vol. 127, no. 2, pp. 437–445, 2000. View at Google Scholar · View at Scopus
  8. S. Watanabe, S. Kondo, M. Hayasaka, and K. Hanaoka, “Functional analysis of homeodomain-containing transcription factor Lbx1 in satellite cells of mouse skeletal muscle,” Journal of Cell Science, vol. 120, no. 23, pp. 4178–4187, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Liebau, M. Tischendorf, D. Ansorge et al., “An inducible expression system of the calcium-activated potassium channel 4 to study the differential impact on embryonic stem cells,” Stem Cells International, vol. 2011, Article ID 456815, 12 pages, 2011. View at Publisher · View at Google Scholar
  10. S. Liebau, B. Vaida, C. Proepper et al., “Formation of cellular projections in neural progenitor cells depends on SK3 channel activity,” Journal of Neurochemistry, vol. 101, no. 5, pp. 1338–1350, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Liebau, J. Steinestel, L. Linta et al., “An SK3 channel/nWASP/Abi-1 complex is involved in early neurogenesis,” PLoS One, vol. 6, no. 3, Article ID e18148, 2011. View at Publisher · View at Google Scholar
  12. S. J. Kattman, E. D. Adler, and G. M. Keller, “Specification of multipotential cardiovascular progenitor cells during embryonic stem cell differentiation and embryonic development,” Trends in Cardiovascular Medicine, vol. 17, no. 7, pp. 240–246, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Kleger, T. Seufferlein, D. Malan et al., “Modulation of calcium-activated potassium channels induces cardiogenesis of pluripotent stem cells and enrichment of pacemaker-like cells,” Circulation, vol. 122, no. 18, pp. 1823–1836, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Endo, M. Sano, J. Fujita et al., “Bone marrow-derived cells are involved in the pathogenesis of cardiac hypertrophy in response to pressure overload,” Circulation, vol. 116, no. 10, pp. 1176–1184, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Bujak and N. G. Frangogiannis, “The role of TGF-β signaling in myocardial infarction and cardiac remodeling,” Cardiovascular Research, vol. 74, no. 2, pp. 184–195, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Kania, P. Blyszczuk, and U. Eriksson, “Mechanisms of cardiac fibrosis in inflammatory heart disease,” Trends in Cardiovascular Medicine, vol. 19, no. 8, pp. 247–252, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Mingliang, Z. Bo, and W. Zhengguo, “Stem cells for cardiac repair: status, mechanisms, and new strategies,” Stem Cells International, vol. 2011, Article ID 310928, 8 pages, 2011. View at Publisher · View at Google Scholar
  18. O. M. Villet, A. Siltanen, T. Pätilä et al., “Advances in cell transplantation therapy for diseased myocardium,” Stem Cells International, vol. 2011, Article ID 679171, 8 pages, 2011. View at Publisher · View at Google Scholar
  19. A. Kleger, S. Liebau, Q. Lin, G. von Wichert, and T. Seufferlein, “The impact of bioactive lipids on cardiovascular development,” Stem Cells International, vol. 2011, Article ID 916180, 13 pages, 2011. View at Publisher · View at Google Scholar