Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2011, Article ID 348960, 7 pages
http://dx.doi.org/10.4061/2011/348960
Review Article

Induced Pluripotent Stem Cells in Cardiovascular Medicine

1Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
2Center for Integrated Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan

Received 22 December 2010; Revised 25 May 2011; Accepted 18 July 2011

Academic Editor: Randall J. Lee

Copyright © 2011 Toru Egashira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Neubauer, “The failing heart—an engine out of fuel,” New England Journal of Medicine, vol. 356, no. 11, pp. 1140–1151, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. D. Mancini and K. Lietz, “Selection of cardiac transplantation candidates in 2010,” Circulation, vol. 122, no. 2, pp. 173–183, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. L. Bu, X. Jiang, S. Martin-Puig et al., “Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages,” Nature, vol. 460, no. 7251, pp. 113–117, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. A. P. Beltrami, L. Barlucchi, D. Torella et al., “Adult cardiac stem cells are multipotent and support myocardial regeneration,” Cell, vol. 114, no. 6, pp. 763–776, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. K. Takahashi, K. Tanabe, M. Ohnuki et al., “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell, vol. 131, no. 5, pp. 861–872, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. J. Yu, M. A. Vodyanik, K. Smuga-Otto et al., “Induced pluripotent stem cell lines derived from human somatic cells,” Science, vol. 318, no. 5858, pp. 1917–1920, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. J. Liao, C. Cui, S. Chen et al., “Generation of induced pluripotent stem cell lines from adult rat cells,” Cell Stem Cell, vol. 4, no. 1, pp. 11–15, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. M. A. Esteban, J. Xu, J. Yang et al., “Generation of induced pluripotent stem cell lines from Tibetan miniature pig,” Journal of Biological Chemistry, vol. 284, no. 26, pp. 17634–17640, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. I. Tomioka, T. Maeda, H. Shimada et al., “Generating induced pluripotent stem cells from common marmoset (Callithrix jacchus) fetal liver cells using defined factors, including Lin28,” Genes to Cells, vol. 15, no. 9, pp. 959–969, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. S. Yuasa and K. Fukuda, “Cardiac regenerative medicine,” Circulation Journal, vol. 72, pp. A49–A55, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Yuasa and K. Fukuda, “Recent advances in cardiovascular regenerative medicine: the induced pluripotent stem cell era,” Expert Review of Cardiovascular Therapy, vol. 6, no. 6, pp. 803–810, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. Y. Yoshida and S. Yamanaka, “IPS cells: a source of cardiac regeneration,” Journal of Molecular and Cellular Cardiology, vol. 50, no. 2, pp. 327–332, 2011. View at Publisher · View at Google Scholar · View at PubMed
  14. M. J. Evans and M. H. Kaufman, “Establishment in culture of pluripotential cells from mouse embryos,” Nature, vol. 292, no. 5819, pp. 154–156, 1981. View at Google Scholar · View at Scopus
  15. J. A. Thomson, “Embryonic stem cell lines derived from human blastocysts,” Science, vol. 282, no. 5391, pp. 1145–1147, 1998. View at Google Scholar
  16. T. Brambrink, R. Foreman, G. G. Welstead et al., “Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells,” Cell Stem Cell, vol. 2, no. 2, pp. 151–159, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. K. Okita, T. Ichisaka, and S. Yamanaka, “Generation of germline-competent induced pluripotent stem cells,” Nature, vol. 448, no. 7151, pp. 313–317, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. W. Zhou and C. R. Freed, “Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells,” Stem Cells, vol. 27, no. 11, pp. 2667–2674, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. J. Yu, K. Hu, K. Smuga-Otto et al., “Human induced pluripotent stem cells free of vector and transgene sequences,” Science, vol. 324, no. 5928, pp. 797–801, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. K. Kaji, K. Norrby, A. Paca, M. Mileikovsky, P. Mohseni, and K. Woltjen, “Virus-free induction of pluripotency and subsequent excision of reprogramming factors,” Nature, vol. 458, no. 7239, pp. 771–775, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. K. Woltjen, I. P. Michael, P. Mohseni et al., “PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells,” Nature, vol. 458, no. 7239, pp. 766–770, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. H. Zhou, S. Wu, J. Y. Joo et al., “Generation of induced pluripotent stem cells using recombinant proteins,” Cell Stem Cell, vol. 4, no. 5, pp. 381–384, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. D. Kim, C. H. Kim, J. I. Moon et al., “Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins,” Cell Stem Cell, vol. 4, no. 6, pp. 472–476, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. L. Warren, P. D. Manos, T. Ahfeldt et al., “Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA,” Cell Stem Cell, vol. 7, no. 5, pp. 618–630, 2010. View at Publisher · View at Google Scholar · View at PubMed
  25. Y. Xu, Y. Shi, and S. Ding, “A chemical approach to stem-cell biology and regenerative medicine,” Nature, vol. 453, no. 7193, pp. 338–344, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. D. Huangfu, R. Maehr, W. Guo et al., “Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds,” Nature Biotechnology, vol. 26, no. 7, pp. 795–797, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. N. Urasawa, M. R. Wada, N. Machida et al., “Selective vacuolar degeneration in dystrophin-deficient canine Purkinje fibers despite preservation of dystrophin-associated proteins with overexpression of Dp71,” Circulation, vol. 117, no. 19, pp. 2437–2448, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. H. J. Cho, C. S. Lee, Y. W. Kwon et al., “Induction of pluripotent stem cells from adult somatic cells by protein-based reprogramming without genetic manipulation,” Blood, vol. 116, no. 3, pp. 386–395, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. A. Kunisato, M. Wakatsuki, H. Shinba, T. Ota, I. Ishida, and K. Nagao, “Direct generation of induced pluripotent stem cells from human nonmobilized blood,” Stem Cells and Development, vol. 20, no. 1, pp. 159–168, 2011. View at Publisher · View at Google Scholar · View at PubMed
  30. J. Staerk, M. M. Dawlaty, Q. Gao et al., “Reprogramming of human peripheral blood cells to induced pluripotent stem cells,” Cell stem cell, vol. 7, no. 1, pp. 20–24, 2010. View at Google Scholar · View at Scopus
  31. Y. H. Loh, O. Hartung, H. Li et al., “Reprogramming of T cells from human peripheral blood,” Cell stem cell, vol. 7, no. 1, pp. 15–19, 2010. View at Google Scholar · View at Scopus
  32. M. E. Brown, E. Rondon, D. Rajesh et al., “Derivation of induced pluripotent stem cells from human peripheral blood T lymphocytes,” PLoS One, vol. 5, no. 6, Article ID e11373, 2010. View at Publisher · View at Google Scholar · View at PubMed
  33. T. Seki, S. Yuasa, M. Oda et al., “Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells,” Cell stem cell, vol. 7, no. 1, pp. 11–14, 2010. View at Google Scholar · View at Scopus
  34. S. Okano, Y. Yonemitsu, S. Nagata et al., “Recombinant Sendai virus vectors for activated T lymphocytes,” Gene Therapy, vol. 10, no. 16, pp. 1381–1391, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. L. W. Van Laake, L. Qian, P. Cheng et al., “Reporter-based isolation of induced pluripotent stem cell-and embryonic stem cell-derived cardiac progenitors reveals limited gene expression variance,” Circulation Research, vol. 107, no. 3, pp. 340–347, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. J. Xi, M. Khalil, N. Shishechian et al., “Comparison of contractile behavior of native murine ventricular tissue and cardiomyocytes derived from embryonic or induced pluripotent stem cells,” FASEB Journal, vol. 24, no. 8, pp. 2739–2751, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. N. Yokoo, S. Baba, S. Kaichi et al., “The effects of cardioactive drugs on cardiomyocytes derived from human induced pluripotent stem cells,” Biochemical and Biophysical Research Communications, vol. 387, no. 3, pp. 482–488, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. A. Kuzmenkin, H. Liang, G. Xu et al., “Functional characterization of cardiomyocytes derived from murine induced pluripotent stem cells in vitro,” FASEB Journal, vol. 23, no. 12, pp. 4168–4180, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. S. Ueno, G. Weidinger, T. Osugi et al., “Biphasic role for Wnt/β-catenin signaling in cardiac specification in zebrafish and embryonic stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 23, pp. 9685–9690, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. A. T. Naito, I. Shiojima, H. Akazawa et al., “Developmental stage-specific biphasic roles of Wnt/β-catenin signaling in cardiomyogenesis and hematopoiesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 52, pp. 19812–19817, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. L. Lin, L. Cui, W. Zhou et al., “β-Catenin directly regulates Islet1 expression in cardiovascular progenitors and is required for multiple aspects of cardiogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 22, pp. 9313–9318, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. A. Klaus, Y. Saga, M. M. Taketo, E. Tzahor, and W. Birchmeier, “Distinct roles of Wnt/β-catenin and Bmp signaling during early cardiogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 47, pp. 18531–18536, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. L. Yang, M. H. Soonpaa, E. D. Adler et al., “Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population,” Nature, vol. 453, no. 7194, pp. 524–528, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. S. Parisi, D. D'Andrea, C. T. Lago, E. D. Adamson, M. G. Persico, and G. Minchiotti, “Nodal-dependent Cripto signaling promotes cardiomyogenesis and redirects the neural fate of embryonic stem cells,” Journal of Cell Biology, vol. 163, no. 2, pp. 303–314, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. P. Zhang, J. Li, Z. Tan et al., “Short-term BMP-4 treatment initiates mesoderm induction in human embryonic stem cells,” Blood, vol. 111, no. 4, pp. 1933–1941, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. D. Kami, I. Shiojima, H. Makino et al., “Gremlin enhances the determined path to cardiomyogenesis,” PLoS One, vol. 3, no. 6, Article ID e2407, 2008. View at Publisher · View at Google Scholar · View at PubMed
  47. S. Hong, J. K. Kang, C. J. Bae, E. S. Ryu, S. H. Lee, and J. H. Lee, “Dovelopment of efficient cardiac differentiation method of mouse embryonic stem cells,” Key Engineering Materials, vol. 342-343, pp. 25–28, 2007. View at Google Scholar · View at Scopus
  48. D. Kumar and B. Sun, “Transforming growth factor-β2 enhances differentiation of cardiac myocytes from embryonic stem cells,” Biochemical and Biophysical Research Communications, vol. 332, no. 1, pp. 135–141, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. A. Behfar, L. V. Zingman, D. M. Hodgson et al., “Stem cell differentiation requires a paracrine pathway in the heart,” FASEB Journal, vol. 16, no. 12, pp. 1558–1566, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. M. A. Laflamme, K. Y. Chen, A. V. Naumova et al., “Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts,” Nature Biotechnology, vol. 25, no. 9, pp. 1015–1024, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. J. Hao, M. A. Daleo, C. K. Murphy et al., “Dorsomorphin, a selective small molecule inhibitor of BMP signaling, promotes cardiomyogenesis in embryonic stem cells,” PLoS One, vol. 3, no. 8, Article ID e2904, 2008. View at Publisher · View at Google Scholar · View at PubMed
  52. T. Sumi, N. Tsuneyoshi, N. Nakatsuji, and H. Suemori, “Defining early lineage specification of human embryonic stem cells by the orchestrated balance canonical Wnt/β-catenin, activin/Nodal and BMP signaling,” Development, vol. 135, no. 17, pp. 2969–2979, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. S. L. Paige, T. Osugi, O. K. Afanasiev, L. Pabon, H. Reinecke, and C. E. Murry, “Endogenous Wnt/β-catenin signaling is required for cardiac differentiation in human embryonic stem cells,” PloS One, vol. 5, no. 6, Article ID e11134, 2010. View at Publisher · View at Google Scholar · View at PubMed
  54. S. Yuasa, Y. Itabashi, U. Koshimizu et al., “Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryonic stem cells,” Nature Biotechnology, vol. 23, no. 5, pp. 607–611, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. S. Faure, P. De Santa Barbara, D. J. Roberts, and M. Whitman, “Endogenous patterns of BMP signaling during early chick development,” Developmental Biology, vol. 244, no. 1, pp. 44–65, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. R. B. Fletcher, A. L. Watson, and R. M. Harland, “Expression of Xenopus tropicalis noggin1 and noggin2 in early development: two noggin genes in a tetrapod,” Gene Expression Patterns, vol. 5, no. 2, pp. 225–230, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. S. Yuasa, T. Onizuka, K. Shimoji et al., “Zac1 is an essential transcription factor for cardiac morphogenesis,” Circulation Research, vol. 106, no. 6, pp. 1083–1091, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. K. Shimoji, S. Yuasa, T. Onizuka et al., “G-CSF promotes the proliferation of developing cardiomyocytes in vivo and in derivation from ESCs and iPSCs,” Cell Stem Cell, vol. 6, no. 3, pp. 227–237, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. B. Y. Hu, J. P. Weick, J. Yu et al., “Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 9, pp. 4335–4340, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. J. M. Polo, S. Liu, M. E. Figueroa et al., “Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells,” Nature Biotechnology, vol. 28, no. 8, pp. 848–855, 2010. View at Publisher · View at Google Scholar · View at PubMed
  61. K. Kim, A. Doi, B. Wen et al., “Epigenetic memory in induced pluripotent stem cells,” Nature, vol. 467, no. 7313, pp. 285–290, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. Q. Hu, A. M. Friedrich, L. V. Johnson, and D. O. Clegg, “Memory in induced pluripotent stem cells: reprogrammed human retinal-pigmented epithelial cells show tendency for spontaneous redifferentiation,” Stem Cells, vol. 28, no. 11, pp. 1981–1991, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. K. Fukuda and S. Yuasa, “Stem cells as a source of regenerative cardiomyocytes,” Circulation Research, vol. 98, no. 8, pp. 1002–1013, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. Y.-H. Choi, T. Saric, B. Nasseri et al., “Cardiac cell therapies: the next generation,” Cardiovascular Therapeutics, vol. 29, no. 1, pp. 2–16, 2011. View at Publisher · View at Google Scholar · View at PubMed
  65. I. Kehat, D. Kenyagin-Karsenti, M. Snir et al., “Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes,” Journal of Clinical Investigation, vol. 108, no. 3, pp. 407–414, 2001. View at Publisher · View at Google Scholar · View at Scopus
  66. J. Zhang, G. F. Wilson, A. G. Soerens et al., “Functional cardiomyocytes derived from human induced pluripotent stem cells,” Circulation Research, vol. 104, no. 4, pp. e30–e41, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. L. Zwi, O. Caspi, G. Arbel et al., “Cardiomyocyte differentiation of human induced pluripotent stem cells,” Circulation, vol. 120, no. 15, pp. 1513–1523, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. T. Tanaka, S. Tohyama, M. Murata et al., “In vitro pharmacologic testing using human induced pluripotent stem cell-derived cardiomyocytes,” Biochemical and Biophysical Research Communications, vol. 385, no. 4, pp. 497–502, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. L. W. Van Laake, R. Passier, P. A. Doevendans, and C. L. Mummery, “Human embryonic stem cell-derived cardiomyocytes and cardiac repair in rodents,” Circulation Research, vol. 102, no. 9, pp. 1008–1010, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. O. Caspi, I. Huber, I. Kehat et al., “Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts,” Journal of the American College of Cardiology, vol. 50, no. 19, pp. 1884–1893, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. T. J. Nelson, A. Martinez-Fernandez, S. Yamada, C. Perez-Terzic, Y. Ikeda, and A. Terzic, “Repair of acute myocardial infarction with induced pluripotent stem cells induced by human stemness factors,” Circulation, vol. 120, no. 5, pp. 408–416, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. K. Miura, Y. Okada, T. Aoi et al., “Variation in the safety of induced pluripotent stem cell lines,” Nature Biotechnology, vol. 27, no. 8, pp. 743–745, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. S. J. Kinder, T. E. Tsang, G. A. Quinlan, A. K. Hadjantonakis, A. Nagy, and P. P. L. Tam, “The orderly allocation of mesodermal cells to the extraembryonic structures and the anteroposterior axis during gastrulation of the mouse embryo,” Development, vol. 126, no. 21, pp. 4691–4701, 1999. View at Google Scholar · View at Scopus
  74. S. J. Kattman, T. L. Huber, and G. Keller, “Multipotent Flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages,” Developmental Cell, vol. 11, no. 5, pp. 723–732, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. F. Hattori, H. Chen, H. Yamashita et al., “Nongenetic method for purifying stem cell-derived cardiomyocytes,” Nature Methods, vol. 7, no. 1, pp. 61–66, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. K. Hidaka, M. Shirai, J. K. Lee et al., “The cellular prion protein identifies bipotential cardiomyogenic progenitors,” Circulation Research, vol. 106, no. 1, pp. 111–119, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. J. K. Yamashita, M. Takano, M. Hiraoka-Kanie et al., “Prospective identification of cardiac progenitors by a novel single cell-based cardiomyocyte induction,” FASEB Journal, vol. 19, no. 11, pp. 1534–1536, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. T. J. Nelson, R. S. Faustino, A. Chiriac, R. Crespo-Diaz, A. Behfar, and A. Terzic, “CXCR4+/FLK-1+ biomarkers select a cardiopoietic lineage from embryonic stem cells,” Stem Cells, vol. 26, no. 6, pp. 1464–1473, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. G. Blin, D. Nury, S. Stefanovic et al., “A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates,” Journal of Clinical Investigation, vol. 120, no. 4, pp. 1125–1139, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. J. Leschik, S. Stefanovic, B. Brinon, and M. Pucéat, “Cardiac commitment of primate embryonic stem cells,” Nature Protocols, vol. 3, no. 9, pp. 1381–1387, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. M. K. Gupta, D. J. Illich, A. Gaarz et al., “Global transcriptional profiles of beating clusters derived from human induced pluripotent stem cells and embryonic stem cells are highly similar,” BMC Developmental Biology, vol. 10, article no. 98, 2010. View at Publisher · View at Google Scholar · View at PubMed
  82. A. Gore, Z. Li, H.-L. Fung et al., “Somatic coding mutations in human induced pluripotent stem cells,” Nature, vol. 471, no. 7336, pp. 63–67, 2011. View at Publisher · View at Google Scholar · View at PubMed
  83. T. Zhao, Z.-N. Zhang, Z. Rong, and Y. Xu, “Immunogenicity of induced pluripotent stem cells,” Nature, vol. 474, no. 7350, pp. 212–216, 2011. View at Publisher · View at Google Scholar · View at PubMed
  84. I. H. Park, N. Arora, H. Huo et al., “Disease-specific induced pluripotent stem cells,” Cell, vol. 134, no. 5, pp. 877–886, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. F. Soldner, D. Hockemeyer, C. Beard et al., “Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors,” Cell, vol. 136, no. 5, pp. 964–977, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  86. J. T. Dimos, K. T. Rodolfa, K. K. Niakan et al., “Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons,” Science, vol. 321, no. 5893, pp. 1218–1221, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. A. D. Ebert, J. Yu, F. F. Rose et al., “Induced pluripotent stem cells from a spinal muscular atrophy patient,” Nature, vol. 457, no. 7227, pp. 277–280, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. Á. Raya, I. Rodríguez-Piz, G. Guenechea et al., “Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells,” Nature, vol. 460, no. 7251, pp. 53–59, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. X. Carvajal-Vergara, A. Sevilla, S. L. Dsouza et al., “Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome,” Nature, vol. 465, no. 7299, pp. 808–812, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. A. Moretti, M. Bellin, A. Welling et al., “Patient-specific induced pluripotent stem-cell models for long-QT syndrome,” New England Journal of Medicine, vol. 363, no. 15, pp. 1397–1409, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus