Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2011 (2011), Article ID 425863, 15 pages
http://dx.doi.org/10.4061/2011/425863
Review Article

Nuclear Reprogramming in Mouse Primordial Germ Cells: Epigenetic Contribution

Section of Histology and Embryology, Department of Public Health and Cell Biology, University of Rome “Tor Vergata,” 00173 Rome, Italy

Received 2 March 2011; Accepted 11 July 2011

Academic Editor: Giorgio A. Presicce

Copyright © 2011 Massimo De Felici. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Robinson, “siRNA and DNA methylation do a two-step to silence tandem sequences,” PLos Biology, vol. 4, no. 11, article e407, 2006. View at Google Scholar
  2. H. Kawasaki and K. Taira, “Transcriptional gene silencing by short interfering RNAs,” Current Opinion in Molecular Therapeutics, vol. 7, no. 2, pp. 125–131, 2005. View at Google Scholar · View at Scopus
  3. E. Prokhortchouk and P. A. Defossez, “The cell biology of DNA methylation in mammals,” Biochimica et Biophysica Acta, vol. 1783, no. 11, pp. 2167–2173, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. J. A. Law and S. E. Jacobsen, “Establishing, maintaining and modifying DNA methylation patterns in plants and animals,” Nature Reviews Genetics, vol. 11, no. 3, pp. 204–220, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. S. C. Wu and Y. Zhang, “Active DNA demethylation: many roads lead to Rome,” Nature Reviews Molecular Cell Biology, vol. 11, no. 9, pp. 607–620, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. C. Martin and Y. Zhang, “The diverse functions of histone lysine methylation,” Nature Reviews Molecular Cell Biology, vol. 6, no. 11, pp. 838–849, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. B. Schuettengruber, D. Chourrout, M. Vervoort, B. Leblanc, and G. Cavalli, “Genome regulation by polycomb and trithorax proteins,” Cell, vol. 128, no. 4, pp. 735–745, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. A. McLaren and K. A. Lawson, “How is the mouse germ-cell lineage established?” Differentiation, vol. 73, no. 9-10, pp. 435–437, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. K. Hayashi, S. M.C.D.S. Lopes, and M. A. Surani, “Germ cell specification in mice,” Science, vol. 316, no. 5823, pp. 394–396, 2007. View at Publisher · View at Google Scholar · View at PubMed
  10. Y. Saga, “Mouse germ cell development during embryogenesis,” Current Opinion in Genetics & Development, vol. 18, no. 4, pp. 337–341, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. P. Western, “Foetal germ cells: striking the balance between pluripotency and differentiation,” International Journal of Developmental Biology, vol. 53, no. 2-3, pp. 393–409, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. M. De Felici, “Primordial germ cell biology at the beginning of the XXI Century,” International Journal of Developmental Biology, vol. 53, no. 7, pp. 891–894, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. Y. Ohinata, B. Payer, D. O'Carroll et al., “Blimp1 is a critical determinant of the germ cell lineage in mice,” Nature, vol. 436, no. 7048, pp. 207–213, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. M. Ginsburg, M. H. L. Snow, and A. McLaren, “Primordial germ cells in the mouse embryo during gastrulation,” Development, vol. 110, no. 2, pp. 521–528, 1990. View at Google Scholar · View at Scopus
  15. A. McLaren and G. Durcova-Hills, “Germ cells and pluripotent stem cells in the mouse,” Reproduction, Fertility and Development, vol. 13, no. 7-8, pp. 661–664, 2001. View at Google Scholar · View at Scopus
  16. G. Durcova-Hills, I. R. Adams, S. C. Barton, M. A. Surani, and A. McLaren, “The role of exogenous fibroblast growth factor-2 on the reprogramming of primordial germ cells into pluripotent stem cells,” Stem Cells, vol. 24, no. 6, pp. 1441–1449, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. P. J. Donovan and M. P. De Miguel, “Turning germ cells into stem cells,” Current Opinion in Genetics & Development, vol. 13, no. 5, pp. 463–471, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. L. C. Stevens and D. S. Varnum, “The development of teratomas from parthenogenetically activated ovarian mouse eggs,” Developmental Biology, vol. 37, no. 2, pp. 369–380, 1974. View at Google Scholar · View at Scopus
  19. M. Kanatsu-Shinohara, K. Inoue, J. Lee et al., “Generation of pluripotent stem cells from neonatal mouse testis,” Cell, vol. 119, no. 7, pp. 1001–1012, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. K. Guan, K. Nayernia, L. S. Maier et al., “Pluripotency of spermatogonial stem cells from adult mouse testis,” Nature, vol. 440, no. 7088, pp. 1199–1203, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. M. Seandel, D. James, S. V. Shmelkov et al., “Generation of functional multipotent adult stem cells from GPR125+ germline progenitors,” Nature, vol. 449, no. 7160, pp. 346–350, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. M. Monk, M. Boubelik, and S. Lehnert, “Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development,” Development, vol. 99, no. 3, pp. 371–382, 1987. View at Google Scholar · View at Scopus
  23. T. Kafri, M. Ariel, M. Brandeis et al., “Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line,” Genes and Development, vol. 6, no. 5, pp. 705–714, 1992. View at Google Scholar · View at Scopus
  24. Y. Seki, K. Hayashi, K. Itoh, M. Mizugaki, M. Saitou, and Y. Matsui, “Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice,” Developmental Biology, vol. 278, no. 2, pp. 440–458, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. Y. Seki, M. Yamaji, Y. Yabuta et al., “Cellular dynamics associated with the genome-wide epigenetic reprogramming in migrating primordial germ cells in mice,” Development, vol. 134, no. 14, pp. 2627–2638, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. Y. Yabuta, K. Kurimoto, Y. Ohinata, Y. Seki, and M. Saitou, “Gene expression dynamics during germline specification in mice identified by quantitative single-cell gene expression profiling,” Biology of Reproduction, vol. 75, no. 5, pp. 705–716, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. K. Kurimoto, Y. Yabuta, Y. Ohinata, M. Shigeta, K. Yamanaka, and M. Saitou, “Complex genome-wide transcription dynamics orchestrated by Blimp1 for the specification of the germ cell lineage in mice,” Genes and Development, vol. 22, no. 12, pp. 1617–1635, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. M. A. Surani and P. Hajkova, “Epigenetic rprogramming of mouse germ cells toward totipotency,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 75, pp. 211–218, 2010. View at Publisher · View at Google Scholar · View at PubMed
  29. M. A. Surani, K. Hayashi, and P. Hajkova, “Genetic and epigenetic regulators of pluripotency,” Cell, vol. 128, no. 4, pp. 747–762, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. Y. Kato, M. Kaneda, K. Hata et al., “Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse,” Human Molecular Genetics, vol. 16, no. 19, pp. 2272–2280, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. G. Durcova-Hills, F. Tang, G. Doody, R. Tooze, and M. A. Surani, “Reprogramming primordial germ cells into pluripotent stem cells,” PLoS One, vol. 3, no. 10, Article ID e3531, 2008. View at Publisher · View at Google Scholar · View at PubMed
  32. C. Popp, W. Dean, S. Feng et al., “Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency,” Nature, vol. 463, no. 7284, pp. 1101–1105, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. P. Hajkova, S. J. Jeffries, C. Lee, N. Miller, S. P. Jackson, and M. A. Surani, “Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway,” Science, vol. 329, no. 5987, pp. 78–82, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. K. Mochizuki and Y. Matsui, “Epigenetic profiles in primordial germ cells: global modulation and fine tuning of the epigenome for acquisition of totipotency,” Development Growth and Differentiation, vol. 52, no. 6, pp. 517–525, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. H. D. Morgan, W. Dean, H. A. Coker, W. Reik, and S. K. Petersen-Mahrt, “Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming,” Journal of Biological Chemistry, vol. 279, no. 50, pp. 52353–52360, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. K. Rai, I. J. Huggins, S. R. James, A. R. Karpf, D. A. Jones, and B. R. Cairns, “DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45,” Cell, vol. 135, no. 7, pp. 1201–1212, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. M. R. Branco, M. Oda, and W. Reik, “Safeguarding parental identity: Dnmt1 maintains imprints during epigenetic reprogramming in early embryogenesis,” Genes and Development, vol. 22, no. 12, pp. 1567–1571, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. T. Nakamura, Y. Arai, H. Umehara et al., “PGC7/Stella protects against DNA demethylation in early embryogenesis,” Nature Cell Biology, vol. 9, no. 1, pp. 64–71, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. N. Hattori, K. Nishino, Y. G. Ko et al., “Epigenetic control of mouse Oct-4 gene expression in embryonic stem cells and trophoblast stem cells,” Journal of Biological Chemistry, vol. 279, no. 17, pp. 17063–17069, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. N. Hattori, Y. Imao, K. Nishino et al., “Epigenetic regulation of Nanog gene in embryonic stem and trophoblast stem cells,” Genes to Cells, vol. 12, no. 3, pp. 387–396, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. C. R. Farthing, G. Ficz, R. K. Ng et al., “Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes,” PLoS Genetics, vol. 4, no. 6, Article ID e1000116, 2008. View at Publisher · View at Google Scholar · View at PubMed
  42. P. Gu, D. Le Menuet, A. C. K. Chung, and A. J. Cooney, “Differential recruitment of methylated CpG binding domains by the orphan receptor GCNF initiates the repression and silencing of Oct4 expression,” Molecular and Cellular Biology, vol. 26, no. 24, pp. 9471–9483, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. N. Sato, M. Kondo, and K.-I. Arai, “The orphan nuclear receptor GCNF recruits DNA methyltransferase for Oct-3/4 silencing,” Biochemical and Biophysical Research Communications, vol. 344, no. 3, pp. 845–851, 2006. View at Publisher · View at Google Scholar · View at PubMed
  44. N. Feldman, A. Gerson, J. Fang et al., “G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis,” Nature Cell Biology, vol. 8, no. 2, pp. 188–194, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. K. Hayashi, S. M. Lopes, F. Tang, and M. A. Surani, “Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states,” Cell Stem Cell, vol. 3, no. 4, pp. 391–401, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. M. Sugimoto and K. Abe, “X chromosome reactivation initiates in nascent primordial germ cells in mice,” PLoS Genetics, vol. 3, no. 7, article e116, 2007. View at Publisher · View at Google Scholar · View at PubMed
  47. L. B. K. Herzing, J. T. Romer, J. M. Horn, and A. Ashworth, “Xist has properties of the X-chromosome inactivation centre,” Nature, vol. 386, no. 6622, pp. 272–275, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. T. Sado, Y. Hoki, and H. Sasaki, “Tsix silences Xist through modification of chromatin structure,” Developmental Cell, vol. 9, no. 1, pp. 159–165, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. P. Hajkova, S. Erhardt, N. Lane et al., “Epigenetic reprogramming in mouse primordial germ cells,” Mechanisms of Development, vol. 117, no. 1-2, pp. 15–23, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. N. Lane, W. Dean, S. Erhardt et al., “Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse,” Genesis, vol. 35, no. 2, pp. 88–93, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. D. J. Lees-Murdock, M. De Felici, and C. P. Walsh, “Methylation dynamics of repetitive DNA elements in the mouse germ cell lineage,” Genomics, vol. 82, no. 2, pp. 230–237, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. M. S. Bartolomei, “Genomic imprinting: employing and avoiding epigenetic processes,” Genes and Development, vol. 23, no. 18, pp. 2124–2133, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. Q. J. Hudson, T. M. Kulinski, S. P. Huetter, and D. P. Barlow, “Genomic imprinting mechanisms in embryonic and extraembryonic mouse tissues,” Heredity, vol. 105, no. 1, pp. 45–56, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. D. M. Maatouk, L. D. Kellam, M. R. W. Mann et al., “DNA methylation is a primary mechanism for silencing postmigratory primordial germ cell genes in both germ cell and somatic cell lineages,” Development, vol. 133, no. 17, pp. 3411–3418, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. P. Hajkova, K. Ancelin, T. Waldmann et al., “Chromatin dynamics during epigenetic reprogramming in the mouse germ line,” Nature, vol. 452, no. 7189, pp. 877–881, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. R. Krishnakumar and W. L. Kraus, “The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets,” Molecular Cell, vol. 39, no. 1, pp. 8–24, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. P. Caiafa, T. Guastafierro, and M. Zampieri, “Epigenetics: poly(ADP-ribosyl)ation of PARP-1 regulates genomic methylation patterns,” The FASEB Journal, vol. 23, no. 3, pp. 672–678, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. P. P. L. Tam and M. H. L. Snow, “Proliferation and migration of primordial germ cells during compensatory growth in mouse embryos,” Journal of Embryology and Experimental Morphology, vol. 64, pp. 133–147, 1981. View at Google Scholar · View at Scopus
  59. K. Plath, J. Fang, S. K. Mlynarczyk-Evans et al., “Role of histone H3 lysine 27 methylation in X inactivation,” Science, vol. 300, no. 5616, pp. 131–135, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. J. Silva, W. Mak, I. Zvetkova et al., “Establishment of histone H3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes,” Developmental Cell, vol. 4, no. 4, pp. 481–495, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. S. M. Chuva de Sousa Lopes, K. Hayashi, T. C. Shovlin, W. Mifsud, M. A. Surani, and A. McLaren, “X chromosome activity in mouse XX primordial germ cells,” PLoS Genetics, vol. 4, no. 2, article e30, 2008. View at Publisher · View at Google Scholar · View at PubMed
  62. K. Ancelin, U. C. Lange, P. Hajkova et al., “Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells,” Nature Cell Biology, vol. 8, no. 6, pp. 623–630, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. M. de Napoles, T. Nesterova, and N. Brockdorff, “Early loss of Xist RNA expression and inactive X chromosome associated chromatin modification in developing primordial germ cells,” PLoS One, vol. 2, no. 9, article e860, 2007. View at Publisher · View at Google Scholar · View at PubMed
  64. A. Meissner, T. S. Mikkelsen, H. Gu et al., “Genome-scale DNA methylation maps of pluripotent and differentiated cells,” Nature, vol. 454, no. 7205, pp. 766–770, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. S. D. Fouse, Y. Shen, M. Pellegrini et al., “Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation,” Cell Stem Cell, vol. 2, no. 2, pp. 160–169, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. F. Mohn, M. Weber, M. Rebhan et al., “Lineage-specific Polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors,” Molecular Cell, vol. 30, no. 6, pp. 755–766, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. I. Zvetkova, A. Apedaile, B. Ramsahoye et al., “Global hypomethylation of the genome in XX embryonic stem cells,” Nature Genetics, vol. 37, no. 11, pp. 1274–1279, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. T. C. Shovlin, G. Durcova-Hills, A. Surani, and A. McLaren, “Heterogeneity in imprinted methylation patterns of pluripotent embryonic germ cells derived from pre-migratory mouse germ cells,” Developmental Biology, vol. 313, no. 2, pp. 674–681, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. T. Tada, M. Tada, K. Hilton et al., “Epigenotype switching of imprintable loci in embryonic germ cells,” Development Genes and Evolution, vol. 207, no. 8, pp. 551–561, 1998. View at Publisher · View at Google Scholar · View at Scopus
  70. K. Shiota, Y. Kogo, J. Ohgane et al., “Epigenetic marks by DNA methylation specific to stem, germ and somatic cells in mice,” Genes to Cells, vol. 7, no. 9, pp. 961–969, 2002. View at Publisher · View at Google Scholar · View at Scopus
  71. C. R. Farthing, G. Ficz, R. K. Ng et al., “Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes,” PLoS Genetics, vol. 4, no. 6, Article ID e1000116, 2008. View at Publisher · View at Google Scholar · View at PubMed
  72. M. Okano, D. W. Bell, D. A. Haber, and E. Li, “DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development,” Cell, vol. 99, no. 3, pp. 247–257, 1999. View at Publisher · View at Google Scholar · View at Scopus
  73. T. Latham, N. Gilbert, and B. Ramsahoye, “DNA methylation in mouse embryonic stem cells and development,” Cell and Tissue Research, vol. 331, no. 1, pp. 31–55, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. K. Tsuji-Takayama, T. Inoue, Y. Ijiri et al., “Demethylating agent, 5-azacytidine, reverses differentiation of embryonic stem cells,” Biochemical and Biophysical Research Communications, vol. 323, no. 1, pp. 86–90, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. S. Yeo, S. Jeong, J. Kim, J. S. Han, Y. M. Han, and Y. K. Kang, “Characterization of DNA methylation change in stem cell marker genes during differentiation of human embryonic stem cells,” Biochemical and Biophysical Research Communications, vol. 359, no. 3, pp. 536–542, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. M. G. Guenther, S. S. Levine, L. A. Boyer, R. Jaenisch, and R. A. Young, “A chromatin landmark and transcription initiation at most promoters in human cells,” Cell, vol. 130, no. 1, pp. 77–88, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. V. Azuara, P. Perry, S. Sauer et al., “Chromatin signatures of pluripotent cell lines,” Nature Cell Biology, vol. 8, no. 5, pp. 532–538, 2006. View at Google Scholar · View at Scopus
  78. B. E. Bernstein, T. S. Mikkelsen, X. Xie et al., “A bivalent chromatin structure marks key developmental genes in embryonic stem cells,” Cell, vol. 125, no. 2, pp. 315–326, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. T. S. Mikkelsen, M. Ku, D. B. Jaffe et al., “Genome-wide maps of chromatin state in pluripotent and lineage-committed cells,” Nature, vol. 448, no. 7153, pp. 553–560, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. E. Karantzali, H. Schulz, O. Hummel, N. Hubner, A. K. Hatzopoulos, and A. Kretsovali, “Histone deacetylase inhibition accelerates the early events of stem cell differentiation: transcriptomic and epigenetic analysis,” Genome Biology, vol. 9, no. 4, article R65, 2008. View at Publisher · View at Google Scholar · View at PubMed
  81. E. Meshorer and T. Misteli, “Chromatin in pluripotent embryonic stem cells and differentiation,” Nature Reviews Molecular Cell Biology, vol. 7, no. 7, pp. 540–546, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. K. W. McCool, X. Xu, D. B. Singer, F. E. Murdoch, and M. K. Fritsch, “The role of histone acetylation in regulating early gene expression patterns during early embryonic stem cell differentiation,” Journal of Biological Chemistry, vol. 282, no. 9, pp. 6696–6706, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. N. Z. Saraiva, C. S. Oliveira, and J. M. Garcia, “Histone acetylation and its role in embryonic stem cell differentiation,” World Journal of Stem Cells, vol. 2, no. 6, pp. 121–126, 2010. View at Google Scholar
  84. T. I. Lee, R. G. Jenner, L. A. Boyer et al., “Control of developmental regulators by Polycomb in human embryonic stem cells,” Cell, vol. 125, no. 2, pp. 301–313, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. L. A. Boyer, K. Plath, J. Zeitlinger et al., “Polycomb complexes repress developmental regulators in murine embryonic stem cells,” Nature, vol. 441, no. 7091, pp. 349–353, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  86. D. O'Carroll, S. Erhardt, M. Pagani, S. C. Barton, M. A. Surani, and T. Jenuwein, “The polycomb-group gene Ezh2 is required for early mouse development,” Molecular and Cellular Biology, vol. 21, no. 13, pp. 4330–4336, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. G. G. Wang, C. D. Allis, and P. Chi, “Chromatin remodeling and cancer, part II: ATP-dependent chromatin remodeling,” Trends in Molecular Medicine, vol. 13, no. 9, pp. 373–380, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. J. W. Voncken, B. A. J. Roelen, M. Roefs et al., “Rnf2 (Ring1b) deficiency causes gastrulation arrest and cell cycle inhibition,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 5, pp. 2468–2473, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. D. Pasini, A. P. Bracken, M. R. Jensen, E. L. Denchi, and K. Helin, “Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity,” The EMBO Journal, vol. 23, no. 20, pp. 4061–4071, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. D. Pasini, A. P. Bracken, J. B. Hansen, M. Capillo, and K. Helin, “The polycomb group protein Suz12 is required for embryonic stem cell differentiation,” Molecular and Cellular Biology, vol. 27, no. 10, pp. 3769–3779, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  91. D. Pasini, K. H. Hansen, J. Christensen, K. Agger, P. A. C. Cloos, and K. Helin, “Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and polycomb-repressive Complex 2,” Genes and Development, vol. 22, no. 10, pp. 1345–1355, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  92. S. J. Chamberlain, D. Yee, and T. Magnuson, “Polycomb repressive complex 2 is dispensable for maintenance of embryonic stem cell pluripotency,” Stem Cells, vol. 26, no. 6, pp. 1496–1505, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  93. M. Leeb, D. Pasini, M. Novatchkova, M. Jaritz, K. Helin, and A. Wutz, “Polycomb complexes act redundantly to repress genomic repeats and genes,” Genes and Development, vol. 24, no. 3, pp. 265–276, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  94. E. M. Morin-Kensicki, C. Faust, C. LaMantia, and T. Magnuson, “Cell and tissue requirements for the gene eed during mouse gastrulation and organogenesis,” Genesis, vol. 31, no. 4, pp. 142–146, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  95. K. H. Hansen, A. P. Bracken, D. Pasini et al., “A model for transmission of the H3K27me3 epigenetic mark,” Nature Cell Biology, vol. 10, no. 11, pp. 1291–1300, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  96. R. Margueron, N. Justin, K. Ohno et al., “Role of the polycomb protein EED in the propagation of repressive histone marks,” Nature, vol. 461, no. 7265, pp. 762–767, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  97. K. Agger, P. A. C. Cloos, J. Christensen et al., “UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development,” Nature, vol. 449, no. 7163, pp. 731–734, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  98. F. De Santa, M. G. Totaro, E. Prosperini, S. Notarbartolo, G. Testa, and G. Natoli, “The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing,” Cell, vol. 130, no. 6, pp. 1083–1094, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  99. F. Lan, P. E. Bayliss, J. L. Rinn et al., “A histone H3 lysine 27 demethylase regulates animal posterior development,” Nature, vol. 449, no. 7163, pp. 689–694, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  100. M. G. Lee, R. Villa, P. Trojer et al., “Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination,” Science, vol. 318, no. 5849, pp. 447–450, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  101. L. A. Cirillo, F. R. Lin, I. Cuesta, D. Friedman, M. Jarnik, and K. S. Zaret, “Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4,” Molecular Cell, vol. 9, no. 2, pp. 279–289, 2002. View at Publisher · View at Google Scholar · View at Scopus
  102. C. H. Lin, A. L. Jackson, J. Guo, P. S. Linsley, and R. N. Eisenman, “Myc-regulated microRNAs attenuate embryonic stem cell differentiation,” The EMBO Journal, vol. 28, no. 20, pp. 3157–3170, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  103. M. Saitou, S. C. Barton, and M. A. Surani, “A molecular programme for the specification of germ cell fate in mice,” Nature, vol. 418, no. 6895, pp. 293–300, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  104. M. Yamaji, Y. Seki, K. Kurimoto et al., “Critical function of Prdm14 for the establishment of the germ cell lineage in mice,” Nature Genetics, vol. 40, no. 8, pp. 1016–1022, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  105. J. L. Resnick, L. S. Bixler, L. Cheng, and P. J. Donovan, “Long-term proliferation of mouse primordial germ cells in culture,” Nature, vol. 359, no. 6395, pp. 550–551, 1992. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  106. Y. Matsui, K. Zsebo, and B. L. M. Hogan, “Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture,” Cell, vol. 70, no. 5, pp. 841–847, 1992. View at Publisher · View at Google Scholar · View at Scopus
  107. M. De Felici, D. Farini, and S. Dolci, “In or out stemness: comparing growth factor signalling in mouse embryonic stem cells and primordial germ cells,” Current Stem Cell Research and Therapy, vol. 4, no. 2, pp. 87–97, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. U. Koshimizu, T. Taga, M. Watanabe et al., “Functional requirement of gp130-mediated signaling for growth and survival of mouse primordial germ cells in vitro and derivation of embryonic germ (EG) cells,” Development, vol. 122, no. 4, pp. 1235–1242, 1996. View at Google Scholar · View at Scopus
  109. G. H. G. Moe-Behrens, F. G. Klinger, W. Eskild, T. Grotmol, T. B. Haugen, and M. De Felici, “Akt/PTEN signaling mediates estrogen-dependent proliferation of primordial germ cells in vitro,” Molecular Endocrinology, vol. 17, no. 12, pp. 2630–2638, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  110. T. Kimura, M. Tomooka, N. Yamano et al., “AKT signaling promotes derivation of embryonic germ cells from primordial germ cells,” Development, vol. 135, no. 5, pp. 869–879, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  111. T. Kimura, A. Suzuki, Y. Fujita et al., “Conditional loss of PTEN leads to testicular teratoma and enhances embryonic germ cell production,” Development, vol. 130, no. 8, pp. 1691–1700, 2003. View at Publisher · View at Google Scholar · View at Scopus
  112. K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  113. N. Maherali, R. Sridharan, W. Xie et al., “Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution,” Cell Stem Cell, vol. 1, no. 1, pp. 55–70, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  114. K. Okita, T. Ichisaka, and S. Yamanaka, “Generation of germline-competent induced pluripotent stem cells,” Nature, vol. 448, no. 7151, pp. 313–317, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  115. M. Wernig, A. Meissner, R. Foreman et al., “In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state,” Nature, vol. 448, no. 7151, pp. 318–324, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  116. H. G. Leitch, K. Blair, W. Mansfield et al., “Embryonic germ cells from mice and rats exhibit properties consistent with a generic pluripotent ground state,” Development, vol. 137, no. 14, pp. 2279–2287, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  117. T. Kimura, T. Nakamura, K. Murayama et al., “The stabilization of β-catenin leads to impaired primordial germ cell development via aberrant cell cycle progression,” Developmental Biology, vol. 300, no. 2, pp. 545–553, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  118. W. Deng and Y. Xu, “Genome integrity: linking pluripotency and tumorgenicity,” Trends in Genetics, vol. 25, no. 10, pp. 425–427, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  119. Q. L. Ying, J. Wray, J. Nichols et al., “The ground state of embryonic stem cell self-renewal,” Nature, vol. 453, no. 7194, pp. 519–523, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  120. D. M. Maatouk and J. L. Resnick, “Continuing primordial germ cell differentiation in the mouse embryo is a cell-intrinsic program sensitive to DNA methylation,” Developmental Biology, vol. 258, no. 1, pp. 201–208, 2003. View at Publisher · View at Google Scholar · View at Scopus
  121. K. Murphy, L. Carvajal, L. Medico, and M. Pepling, “Expression of Stat3 in germ cells of developing and adult mouse ovaries and testes,” Gene Expression Patterns, vol. 5, no. 4, pp. 475–482, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus