Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2011, Article ID 602483, 9 pages
http://dx.doi.org/10.4061/2011/602483
Research Article

Phenotypic Definition of the Progenitor Cells with Erythroid Differentiation Potential Present in Human Adult Blood

1Cell Biology and Neuroscience, Superior Health Institute, 00161 Rome, Italy
2Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY 10029, USA

Received 23 May 2011; Accepted 22 June 2011

Academic Editor: Michel Sadelain

Copyright © 2011 Valentina Tirelli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. H. Orkin and L. I. Zon, “Hematopoiesis: an evolving paradigm for stem cell biology,” Cell, vol. 132, no. 4, pp. 631–644, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. J. Seita and I. L. Weissman, “Hematopoietic stem cell: self-renewal versus differentiation,” Wiley Interdisciplinary Reviews, vol. 2, no. 6, pp. 640–653, 2010. View at Publisher · View at Google Scholar · View at PubMed
  3. G. Prindull, “Hemangioblasts representing a functional endothelio-hematopoietic entity in ontogeny, postnatal life, and CML neovasculogenesis,” Stem Cell Reviews, vol. 1, no. 3, pp. 277–284, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. J. E. Dick and T. Lapidot, “Biology of normal and acute myeloid leukemia stem cells,” International Journal of Hematology, vol. 82, no. 5, pp. 389–396, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. T. Papayannopoulou, J. Abkowitz, A. D'Andrea et al., “Biology of erythtropoiesis, erythroid differentiation and maturation,” in Hematology, R. Hoffman, E. J. Benz, S. J. Shattil et al., Eds., pp. 276–294, Elsevier, Philadelphia, Pa, USA, 5th edition, 2009. View at Google Scholar
  6. I. L. Weissman and J. A. Shizuru, “The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases,” Blood, vol. 112, no. 9, pp. 3543–3553, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. P. M. Lansdorp, H. J. Sutherland, and C. J. Eaves, “Selective expression of CD45 isoforms on functional subpopulations of CD34+ hemopoietic cells from human bone marrow,” Journal of Experimental Medicine, vol. 172, no. 1, pp. 363–366, 1990. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Papayannopoulou, M. Brice, D. Farrer, and K. Kaushansky, “Insights into the cellular mechanisms of erythropoietin-thrombopoietin synergy,” Experimental Hematology, vol. 24, no. 5, pp. 660–669, 1996. View at Google Scholar · View at Scopus
  9. L. Chen, Z. Gao, J. Zhu, and G. P. Rodgers, “Identification of CD13+CD36+ cells as a common progenitor for erythroid and myeloid lineages in human bone marrow,” Experimental Hematology, vol. 35, no. 7, pp. 1047–1055, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. T. Papayannopoulou and D. T. Scadden, “Stem-cell ecology and stem cells in motion,” Blood, vol. 111, no. 8, pp. 3923–3930, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. C. J. Eaves and A. C. Eaves, “Erythropoietin (Ep) dose-response curves for three classes of erythroid progenitors in normal human marrow and in patients with polycythemia vera,” Blood, vol. 52, no. 6, pp. 1196–1210, 1978. View at Google Scholar · View at Scopus
  12. L. Douay, H. Lapillonne, and A. G. Turhan, “Stem cells-A source of adult red blood cells for transfusion purposes: present and future,” Critical Care Clinics, vol. 25, no. 2, pp. 383–398, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. A. R. Migliaccio, C. Whitsett, and G. Migliaccio, “Erythroid cells in vitro: from developmental biology to blood transfusion products,” Current Opinion in Hematology, vol. 16, no. 4, pp. 259–268, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. G. Migliaccio, R. Di Pietro, V. Di Giacomo et al., “In Vitro mass production of human erythroid cells from the blood of normal donors and of thalassemic patients,” Blood Cells, Molecules, and Diseases, vol. 28, no. 2, pp. 169–180, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Migliaccio, M. Sanchez, F. Masiello et al., “Humanized culture medium for clinical expansion of human erythroblasts,” Cell Transplantation, vol. 19, no. 4, pp. 453–469, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. E. van den Akker, T. J. Satchwell, S. Pellegrin, G. Daniels, and A. M. Toye, “The majority of the in vitro erythroid expansion potential resides in CD34- cells, outweighing the contribution of CD34+ cells and significantly increasing the erythroblast yield from peripheral blood samples,” Haematologica, vol. 95, no. 9, pp. 1594–1598, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. S. L. Erlandsen, A. G. Bittermann, J. White, A. Leith, and M. Marko, “High-resolution CryoFESEM of individual cell adhesion molecules (CAMs) in the glycocalyx of human platelets: detection of P-selectin (CD62P), GPI-IX complex (CD42a/CD42bα,bβ), and integrin GPIIbIIIa (CD41/CD61) by immunogold labeling and stereo imaging,” Journal of Histochemistry and Cytochemistry, vol. 49, no. 7, pp. 809–819, 2001. View at Google Scholar
  18. G. Migliaccio, A. R. Migliaccio, M. L. Druzin, P. J. V. Giardina, K. M. Zsebo, and J. W. Adamson, “Long-term generation of colony-forming cells in liquid culture of CD34+ cord blood cells in the presence of recombinant human stem cell factor,” Blood, vol. 79, no. 10, pp. 2620–2627, 1992. View at Google Scholar · View at Scopus
  19. G. Migliaccio, A. R. Migliaccio, and J. W. Adamson, “The biology of hematopoietic growth factors: studies in vitro under serum-deprived conditions,” Experimental Hematology, vol. 18, no. 9, pp. 1049–1055, 1990. View at Google Scholar · View at Scopus
  20. K. E. McGrath, P. D. Kingsley, A. D. Koniski, R. L. Porter, T. P. Bushnell, and J. Palis, “Enucleation of primitive erythroid cells generates a transient population of “pyrenocytes” in the mammalian fetus,” Blood, vol. 111, no. 4, pp. 2409–2417, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. T. Tallone, C. Realini, A. Böhmler et al., “Adult human adipose tissue contains several types of multipotent cells,” Journal of Cardiovascular Translational Research, vol. 4, no. 2, pp. 200–210, 2011. View at Publisher · View at Google Scholar · View at PubMed
  22. A.R. Migliaccio, V. Tirelli, F. Masiello et al., “High levels of CD44 expression identify hematopoietic cells capable of generating great numbers of erythroid cells under HEMA conditions,” Blood, vol. 116, no. 21, 2010. View at Google Scholar
  23. K. Chen, J. Liu, S. Heck, J. A. Chasis, X. An, and N. Mohandas, “Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 41, pp. 17413–17418, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. A. Fujimi, T. Matsunaga, M. Kobune et al., “Ex vivo large-scale generation of human red blood cells from cord blood CD34+ cells by co-culturing with macrophages,” International Journal of Hematology, vol. 87, no. 4, pp. 339–350, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. T. M. A. Neildez-Nguyen, H. Wajcman, M. C. Marden et al., “Human erythroid cells produced ex vivo at large scale differentiate into red blood cells in vivo,” Nature Biotechnology, vol. 20, no. 5, pp. 467–472, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. J. A. Chasis and N. Mohandas, “Erythroblastic islands: niches for erythropoiesis,” Blood, vol. 112, no. 3, pp. 470–478, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus