Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2011, Article ID 679171, 8 pages
http://dx.doi.org/10.4061/2011/679171
Review Article

Advances in Cell Transplantation Therapy for Diseased Myocardium

1Department of Cardiothoracic Surgery, University of Helsinki Meilahti Hospital, P.O. Box 340, FIN-00029 HUS, Finland
2Department of Pharmacology, Institute of Biomedicine, University of Helsinki, 00014 Helsinki, Finland

Received 15 January 2011; Accepted 2 April 2011

Academic Editor: Wojciech Wojakowski

Copyright © 2011 Outi M. Villet et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Orlic, J. Kajstura, S. Chimenti et al., “Bone marrow cells regenerate infarcted myocardium,” Nature, vol. 410, no. 6829, pp. 701–705, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. R. C. J. Chiu, A. Zibaitis, and R. L. Kao, “Cellular cardiomyoplasty: myocardial regeneration with satellite cell implantation,” Annals of Thoracic Surgery, vol. 60, no. 1, pp. 12–18, 1995. View at Publisher · View at Google Scholar · View at Scopus
  3. R. E. Bittner, C. Schöfer, K. Weipoltshammer et al., “Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice,” Anatomy and Embryology, vol. 199, no. 5, pp. 391–396, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Asahara, T. Murohara, A. Sullivan et al., “Isolation of putative progenitor endothelial cells for angiogenesis,” Science, vol. 275, no. 5302, pp. 964–967, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. A. P. Beltrami, L. Barlucchi, D. Torella et al., “Adult cardiac stem cells are multipotent and support myocardial regeneration,” Cell, vol. 114, no. 6, pp. 763–776, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. M. V. Westfall, K. A. Pasyk, D. I. Yule, L. C. Samuelson, and J. M. Metzger, “Ultrastructure and cell-cell coupling of cardiac myocytes differentiating in embryonic stem cell cultures,” Cell Motility and the Cytoskeleton, vol. 36, no. 1, pp. 43–54, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Assmus, U. Fischer-Rasokat, J. Honold et al., “Transcoronary transplantation of functionally competent BMCs is associated with a decrease in natriuretic peptide serum levels and improved survival of patients with chronic postinfarction heart failure: results of the TOPCARE-CHD registry,” Circulation Research, vol. 100, no. 8, pp. 1234–1241, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. S. L. Chen, WU. W. Fang, F. Ye et al., “Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction,” American Journal of Cardiology, vol. 94, no. 1, pp. 92–95, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. S. Janssens, C. Dubois, J. Bogaert et al., “Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial,” The Lancet, vol. 367, no. 9505, pp. 113–121, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. K. Lunde, S. Solheim, S. Aakhus et al., “Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction,” The New England Journal of Medicine, vol. 355, no. 12, pp. 1199–1209, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. V. Schächinger, B. Assmus, J. Honold et al., “Normalization of coronary blood flow in the infarct-related artery after intracoronary progenitor cell therapy: intracoronary Doppler substudy of the TOPCARE-AMI trial,” Clinical Research in Cardiology, vol. 95, no. 1, pp. 13–22, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. K. C. Wollert, G. P. Meyer, J. Lotz et al., “Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial,” The Lancet, vol. 364, no. 9429, pp. 141–148, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. P. Menasché, O. Alfieri, S. Janssens et al., “The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation,” Circulation, vol. 117, no. 9, pp. 1189–1200, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. S. Miyagawa, G. Matsumiya, T. Funatsu et al., “Combined autologous cellular cardiomyoplasty using skeletal myoblasts and bone marrow cells for human ischemic cardiomyopathy with left ventricular assist system implantation: report of a case,” Surgery Today, vol. 39, no. 2, pp. 133–136, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. J. Dow, B. Z. Simkhovich, L. Kedes, and R. A. Kloner, “Washout of transplanted cells from the heart: a potential new hurdle for cell transplantation therapy,” Cardiovascular Research, vol. 67, no. 2, pp. 301–307, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. H. Zhang, P. Song, Y. Tang et al., “Injection of bone marrow mesenchymal stem cells in the borderline area of infarcted myocardium: heart status and cell distribution,” Journal of Thoracic and Cardiovascular Surgery, vol. 134, no. 5, pp. 1234–1240, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. W. Hudson, M. C. Collins, D. deFreitas, Y. S. Sun, B. Muller-Borer, and A. P. Kypson, “Beating and arrested intramyocardial injections are associated with significant mechanical loss: implications for cardiac cell transplantation,” Journal of Surgical Research, vol. 142, no. 2, pp. 263–267, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. F. N. Smets, Y. Chen, L. J. Wang, and H. E. Soriano, “Loss of cell anchorage triggers apoptosis (anoikis) in primary mouse hepatocytes,” Molecular Genetics and Metabolism, vol. 75, no. 4, pp. 344–352, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. P. C. Smits, C. Nienaber, A. Colombo et al., “Myocardial repair by percutaneous cell transplantation of autologous skeletal myoblast as a stand alone procedure in post myocardial infarction chronic heart failure patients,” EuroIntervention, vol. 1, no. 4, pp. 417–424, 2006. View at Google Scholar
  21. C. E. Veltman, O. I. I. Soliman, M. L. Geleijnse et al., “Four-year follow-up of treatment with intramyocardial skeletal myoblasts injection in patients with ischaemic cardiomyopathy,” European Heart Journal, vol. 29, no. 11, pp. 1386–1396, 2008. View at Publisher · View at Google Scholar · View at PubMed
  22. P. Menasché, A. A. Hagège, J. T. Vilquin et al., “Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction,” Journal of the American College of Cardiology, vol. 41, no. 7, pp. 1078–1083, 2003. View at Publisher · View at Google Scholar
  23. S. R. Coppen, S. Fukushima, Y. Shintani et al., “A factor underlying late-phase arrhythmogenicity after cell therapy to the heart: global downregulation of connexin43 in the host myocardium after skeletal myoblast transplantation,” Circulation, vol. 118, no. 14, pp. S138–S144, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. S. Fukushima, A. Varela-Carver, S. R. Coppen et al., “Direct intramyocardial but not intracoronary injection of bone marrow cells induces ventricular arrhythmias in a rat chronic ischemic heart failure model,” Circulation, vol. 115, no. 17, pp. 2254–2261, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. J. Mäkelä, V. Anttila, K. Ylitalo et al., “Acute homing of bone marrow-derived mononuclear cells in intramyocardial vs. intracoronary transplantation,” Scandinavian Cardiovascular Journal, vol. 43, no. 6, pp. 366–373, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. A. Furuta, S. Miyoshi, Y. Itabashi et al., “Pulsatile cardiac tissue grafts using a novel three-dimensional cell sheet manipulation technique functionally integrates with the host heart, in vivo,” Circulation Research, vol. 98, no. 5, pp. 705–712, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. I. A. Memon, Y. Sawa, N. Fukushima et al., “Repair of impaired myocardium by means of implantation of engineered autologous myoblast sheets,” Journal of Thoracic and Cardiovascular Surgery, vol. 130, no. 5, pp. 1333–1341, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. M. Jain, H. DerSimonian, D. A. Brenner et al., “Cell therapy attenuates deleterious ventricular remodeling and improves cardiac performance after myocardial infarction,” Circulation, vol. 103, no. 14, pp. 1920–1927, 2001. View at Google Scholar
  29. B. Pouzet, S. Ghostine, J.-T. Vilquin et al., “Is skeletal myoblast transplantation clinically relevant in the era of angiotensin-converting enzyme inhibitors?” Circulation, vol. 104, supplement 1, pp. i223–i228, 2001. View at Google Scholar
  30. K. A. Hutcheson, B. Z. Atkins, M. T. Hueman, M. B. Hopkins, D. D. Glower, and D. A. Taylor, “Comparison of benefits on myocardial performance of cellular cardiomyoplasty with skeletal myoblasts and fibroblasts,” Cell Transplantation, vol. 9, no. 3, pp. 359–368, 2000. View at Google Scholar
  31. S. Ghostine, C. Carrion, L. C.G. Souza et al., “Long-term efficacy of myoblast transplantation on regional structure and function after myocardial infarction,” Circulation, vol. 106, no. 12, supplement 1, pp. I131–I136, 2002. View at Google Scholar
  32. H. Kondoh, Y. Sawa, S. Miyagawa et al., “Longer preservation of cardiac performance by sheet-shaped myoblast implantation in dilated cardiomyopathic hamsters,” Cardiovascular Research, vol. 69, no. 2, pp. 466–475, 2006. View at Publisher · View at Google Scholar · View at PubMed
  33. Y. Miyahara, N. Nagaya, M. Kataoka et al., “Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction,” Nature Medicine, vol. 12, no. 4, pp. 459–465, 2006. View at Publisher · View at Google Scholar · View at PubMed
  34. H. Okura, A. Matsuyama, C. M. Lee et al., “Cardiomyoblast-like cells differentiated from human adipose tissue-derived mesenchymal stem cells improve left ventricular dysfunction and survival in a rat myocardial infarction model,” Tissue Engineering Part C, vol. 16, no. 3, pp. 417–425, 2010. View at Publisher · View at Google Scholar · View at PubMed
  35. L. Zakharova, D. Mastroeni, N. Mutlu et al., “Transplantation of cardiac progenitor cell sheet onto infarcted heart promotes cardiogenesis and improves function,” Cardiovascular Research, vol. 87, no. 1, pp. 40–49, 2010. View at Publisher · View at Google Scholar · View at PubMed
  36. H. Sekine, T. Shimizu, K. Hobo et al., “Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts,” Circulation, vol. 118, no. 14, pp. S145–S152, 2008. View at Publisher · View at Google Scholar · View at PubMed
  37. S. Miyagawa, Y. Sawa, S. Sakakida et al., “Tissue cardiomyoplasty using bioengineered contractile cardiomyocyte sheets to repair damaged myocardium: their integration with recipient myocardium,” Transplantation, vol. 80, no. 11, pp. 1586–1595, 2005. View at Publisher · View at Google Scholar
  38. H. Sekine, T. Shimizu, S. Kosaka, E. Kobayashi, and T. Okano, “Cardiomyocyte bridging between hearts and bioengineered myocardial tissues with mesenchymal transition of mesothelial cells,” Journal of Heart and Lung Transplantation, vol. 25, no. 3, pp. 324–332, 2006. View at Publisher · View at Google Scholar · View at PubMed
  39. T. Shimizu, H. Sekine, J. Yang et al., “Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues,” FASEB Journal, vol. 20, no. 6, pp. 708–710, 2006. View at Publisher · View at Google Scholar · View at PubMed
  40. H. Kobayashi, T. Shimizu, M. Yamato et al., “Fibroblast sheets co-cultured with endothelial progenitor cells improve cardiac function of infarcted hearts,” Journal of Artificial Organs, vol. 11, no. 3, pp. 141–147, 2008. View at Publisher · View at Google Scholar · View at PubMed
  41. N. Sekiya, G. Matsumiya, S. Miyagawa et al., “Layered implantation of myoblast sheets attenuates adverse cardiac remodeling of the infarcted heart,” Journal of Thoracic and Cardiovascular Surgery, vol. 138, no. 4, pp. 985–993, 2009. View at Publisher · View at Google Scholar · View at PubMed
  42. T. Hoashi, G. Matsumiya, S. Miyagawa et al., “Skeletal myoblast sheet transplantation improves the diastolic function of a pressure-overloaded right heart,” Journal of Thoracic and Cardiovascular Surgery, vol. 138, no. 2, pp. 460–467, 2009. View at Publisher · View at Google Scholar · View at PubMed
  43. K. Kitabayashi, A. Siltanen, T. Pätilä et al., “Bcl-2 expression enhances myoblast sheet transplantation therapy for acute myocardial infarction,” Cell Transplantation, vol. 19, no. 5, pp. 573–588, 2010. View at Publisher · View at Google Scholar · View at PubMed
  44. A. Siltanen, K. Kitabayashi, T. Pätilä et al., “Bcl-2 improves myoblast sheet therapy in rat chronic heart failure,” Tissue Engineering Part A, vol. 17, no. 1-2, pp. 115–125, 2011. View at Publisher · View at Google Scholar · View at PubMed
  45. S. Miyagawa, A. Saito, T. Sakaguchi et al., “Impaired myocardium regeneration with skeletal cell sheets-a preclinical trial for tissue-engineered regeneration therapy,” Transplantation, vol. 90, no. 4, pp. 364–372, 2010. View at Publisher · View at Google Scholar · View at PubMed
  46. D. A. Taylor, “Cell-based myocardial repair: how should we proceed?” International Journal of Cardiology, vol. 95, supplement 1, pp. S8–S12, 2004. View at Publisher · View at Google Scholar
  47. N. E. Bowles, K. R. Bowles, and J. A. Towbin, “The ‘final common pathway’ hypothesis and inherited cardiovascular disease: the role of cytoskeletal proteins in dilated cardiomyopathy,” Herz, vol. 25, no. 3, pp. 168–175, 2000. View at Publisher · View at Google Scholar
  48. R. Langer and J. P. Vacanti, “Tissue engineering,” Science, vol. 260, no. 5110, pp. 920–926, 1993. View at Google Scholar
  49. R. K. Li, Z. Q. Jia, R. D. Weisel, D. A. G. Mickle, A. Choi, and T. M. Yau, “Survival and function of bioengineered cardiac grafts,” Circulation, vol. 100, no. 19, pp. II63–II69, 1999. View at Google Scholar
  50. T. Okano, N. Yamada, H. Sakai, and Y. Sakurai, “A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide),” Journal of Biomedical Materials Research, vol. 27, no. 10, pp. 1243–1251, 1993. View at Google Scholar
  51. AI. Kushida, M. Yamato, C. Konno, A. Kikuchi, Y. Sakurai, and T. Okano, “Decrease in culture temperature releases monolayer endothelial cell sheets together with deposited fibronectin matrix from temperature-responsive culture surfaces,” Journal of Biomedical Materials Research, vol. 45, no. 4, pp. 355–362, 1999. View at Publisher · View at Google Scholar
  52. T. Shimizu, M. Yamato, A. Kikuchi, and T. Okano, “Two-dimensional manipulation of cardiac myocyte sheets utilizing temperature-responsive culture dishes augments the pulsatile amplitude,” Tissue Engineering, vol. 7, no. 2, pp. 141–151, 2001. View at Publisher · View at Google Scholar · View at PubMed
  53. T. Shimizu, M. Yamato, T. Akutsu et al., “Electrically communicating three-dimensional cardiac tissue mimic fabricated by layered cultured cardiomyocyte sheets,” Journal of Biomedical Materials Research, vol. 60, no. 1, pp. 110–117, 2002. View at Publisher · View at Google Scholar · View at PubMed
  54. K. R. Stevens, K. L. Kreutziger, S. K. Dupras et al., “Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 39, pp. 16568–16573, 2009. View at Publisher · View at Google Scholar · View at PubMed
  55. Y. Itabashi, S. Miyoshi, H. Kawaguchi et al., “A new method for manufacturing cardiac cell sheets using fibrin-coated dishes and its electrophysiological studies by optical mapping,” Artificial Organs, vol. 29, no. 2, pp. 95–103, 2005. View at Publisher · View at Google Scholar · View at PubMed
  56. Y. Haraguchi, T. Shimizu, M. Yamato, A. Kikuchi, and T. Okano, “Electrical coupling of cardiomyocyte sheets occurs rapidly via functional gap junction formation,” Biomaterials, vol. 27, no. 27, pp. 4765–4774, 2006. View at Publisher · View at Google Scholar · View at PubMed
  57. T. Shimizu, M. Yamato, Y. Isoi et al., “Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces,” Circulation Research, vol. 90, no. 3, p. e40, 2002. View at Google Scholar
  58. T. Shimizu, H. Sekine, Y. Isoi, M. Yamato, A. Kikuchi, and T. Okano, “Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets,” Tissue Engineering, vol. 12, no. 3, pp. 499–507, 2006. View at Google Scholar
  59. H. Hata, A. Bär, S. Dorfman et al., “Engineering a novel three-dimensional contractile myocardial patch with cell sheets and decellularised matrix,” European Journal of Cardio-thoracic Surgery, 2010. View at Publisher · View at Google Scholar · View at PubMed
  60. S. Levenberg, J. Rouwkema, M. Macdonald et al., “Engineering vascularized skeletal muscle tissue,” Nature Biotechnology, vol. 23, no. 7, pp. 879–884, 2005. View at Publisher · View at Google Scholar · View at PubMed
  61. J. Rouwkema, J. de Boer, and C. A. van Blitterswijk, “Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct,” Tissue Engineering, vol. 12, no. 9, pp. 2685–2693, 2006. View at Publisher · View at Google Scholar · View at PubMed
  62. N. Asakawa, T. Shimizu, Y. Tsuda et al., “Pre-vascularization of in vitro three-dimensional tissues created by cell sheet engineering,” Biomaterials, vol. 31, no. 14, pp. 3903–3909, 2010. View at Publisher · View at Google Scholar · View at PubMed
  63. P. L. Tremblay, V. Hudon, F. Berthod, L. Germain, and F. A. Auger, “Inosculation of tissue-engineered capillaries with the host's vasculature in a reconstructed skin transplanted on mice,” American Journal of Transplantation, vol. 5, no. 5, pp. 1002–1010, 2005. View at Publisher · View at Google Scholar · View at PubMed
  64. T. Sasagawa, T. Shimizu, S. Sekiya et al., “Design of prevascularized three-dimensional cell-dense tissues using a cell sheet stacking manipulation technology,” Biomaterials, vol. 31, no. 7, pp. 1646–1654, 2010. View at Publisher · View at Google Scholar · View at PubMed
  65. K. Hobo, T. Shimizu, H. Sekine, T. Shin'oka, T. Okano, and H. Kurosawa, “Therapeutic angiogenesis using tissue engineered human smooth muscle cell sheets,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 4, pp. 637–643, 2008. View at Publisher · View at Google Scholar · View at PubMed
  66. S. Miyagawa, Y. Sawa, S. Taketani et al., “Myocardial regeneration therapy for heart failure: hepatocyte growth factor enhances the effect of cellular cardiomyoplasty,” Circulation, vol. 105, no. 21, pp. 2556–2561, 2002. View at Publisher · View at Google Scholar
  67. S. Sekiya, T. Shimizu, M. Yamato, A. Kikuchi, and T. Okano, “Bioengineered cardiac cell sheet grafts have intrinsic angiogenic potential,” Biochemical and Biophysical Research Communications, vol. 341, no. 2, pp. 573–582, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. A. Siltanen, K. Kitabayashi, P. Lakkisto et al., “hHGF overexpression in myoblast sheets enhances their angiogenic potential in rat chronic heart failure,” PLoS One, vol. 6, no. 4, Article ID e19161, 2011. View at Google Scholar