Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2011, Article ID 905621, 8 pages
http://dx.doi.org/10.4061/2011/905621
Research Article

Establishment of a Mesenchymal Stem Cell Bank

Reliance Life Sciences Pvt. Ltd., Dhirubhai Ambani Life Sciences Centre, R-282, TTC Area of MIDC, Thane-Belapur Road, Rabale, Navi Mumbai, Maharashtra—400701, India

Received 24 December 2010; Revised 30 April 2011; Accepted 13 June 2011

Academic Editor: Gerald A. Colvin

Copyright © 2011 Khushnuma Cooper and Chandra Viswanathan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. M. Horwitz, “Stem cell plasticity: the growing potential of cellular therapy,” Archives of Medical Research, vol. 34, no. 6, pp. 600–606, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. M. F. Pittenger and B. J. Martin, “Mesenchymal stem cells and their potential as cardiac therapeutics,” Circulation Research, vol. 95, no. 1, pp. 9–20, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. D. Baksh, L. Song, and R. S. Tuan, “Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy,” Journal of Cellular and Molecular Medicine, vol. 8, no. 3, pp. 301–316, 2004. View at Google Scholar · View at Scopus
  4. J. M. Hare, J. H. Traverse, T. D. Henry et al., “A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction,” Journal of the American College of Cardiology, vol. 54, no. 24, pp. 2277–2286, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. G. D'Ippolito, P. C. Schiller, C. Ricordi, B. A. Roos, and G. A. Howard, “Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow,” Journal of Bone and Mineral Research, vol. 14, no. 7, pp. 1115–1122, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. M. S. Rao and M. P. Mattson, “Stem cells and aging: expanding the possibilities,” Mechanisms of Ageing and Development, vol. 122, no. 7, pp. 713–734, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Secco, E. Zucconi, N. M. Vieira et al., “Multipotent stem cells from umbilical cord: cord is richer than blood!,” Stem Cells, vol. 26, no. 1, pp. 146–150, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. A. Erices, P. Conget, and J. J. Minguell, “Mesenchymal progenitor cells in human umbilical cord blood,” British Journal of Haematology, vol. 109, no. 1, pp. 235–242, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. O. K. Lee, T. K. Kuo, W. M. Chen, K. D. Lee, S. L. Hsieh, and T. H. Chen, “Isolation of multipotent mesenchymal stem cells from umbilical cord blood,” Blood, vol. 103, no. 5, pp. 1669–1675, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. S. A. Wexler, C. Donaldson, P. Denning-Kendall, C. Rice, B. Bradley, and J. M. Hows, “Adult bone marrow is a rich source of human mesenchymal 'stem' cells but umbilical cord and mobilized adult blood are not,” British Journal of Haematology, vol. 121, no. 2, pp. 368–374, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. H. M. Lazarus, S. E. Haynesworth, S. L. Gerson, and A. I. Caplan, “Human bone marrow-derived mesenchymal (stromal) progenitor cells (MPCs) cannot be recovered from peripheral blood progenitor cell collections,” Journal of Hematotherapy and Stem Cell Research, vol. 6, no. 5, pp. 447–455, 1997. View at Google Scholar · View at Scopus
  12. P. Shetty, K. Cooper, and C. Viswanathan, “Comparison of proliferative and multileneage differentiation potential of cord matrix, cord blood and bone marrow mesenchymal stem cells,” Asian Journal of Transfusion Science, vol. 1, pp. 14–24, 2001. View at Google Scholar
  13. M. L. Weiss and D. L. Troyer, “Stem cells in the umbilical cord,” Stem Cell Reviews, vol. 2, no. 2, pp. 155–162, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Can and S. Karahuseyinoglu, “Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells,” Stem Cells, vol. 25, no. 11, pp. 2886–2895, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. K. Cooper, A. SenMajumdar, and C. Viswanathan, “Derivation, expansion and characterization of clinical grade mesenchymal stem cells from umbilical cord matrix using cord blood serum,” International Journal of Stem Cells, vol. 3, pp. 119–128, 2010. View at Google Scholar
  16. S. Tipnis, C. Viswanathan, and A. S. Majumdar, “Immunosuppressive properties of human umbilical cord-derived mesenchymal stem cells: role of B7-H1 and IDO,” Immunology and Cell Biology, vol. 88, no. 8, pp. 795–806, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. R. Sarugaser, D. Lickorish, D. Baksh, M. M. Hosseini, and J. E. Davies, “Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors,” Stem Cells, vol. 23, no. 2, pp. 220–229, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. D. T. Covas, J. L. C. Siufi, A. R. L. Silva, and M. D. Orellana, “Isolation and culture of umbilical vein mesenchymal stem cells,” Brazilian Journal of Medical and Biological Research, vol. 36, no. 9, pp. 1179–1183, 2003. View at Google Scholar · View at Scopus
  19. S. M. Devine, A. M. Bartholomew, N. Mahmud et al., “Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion,” Experimental Hematology, vol. 29, no. 2, pp. 244–255, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. E. M. Horwitz, P. L. Gordon, W. K. K. Koo et al., “Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 13, pp. 8932–8937, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. K. Le Blanc, I. Rasmusson, B. Sundberg et al., “Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells,” Lancet, vol. 363, no. 9419, pp. 1439–1441, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. O. N. Koç, S. L. Gerson, B. W. Cooper et al., “Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy,” Journal of Clinical Oncology, vol. 18, no. 2, pp. 307–316, 2000. View at Google Scholar · View at Scopus
  23. K. Le Blanc, H. Samuelsson, B. Gustafsson et al., “Transplantation of mesenchymal stem cells to enhance engraftment of haematopoietic stem cells,” Leukemia, vol. 21, pp. 1733–1738, 2007. View at Google Scholar
  24. M. L. MacMillan, B. R. Blazar, T. E. DeFor, and J. E. Wagner, “Transplantation of ex-vivo culture-expanded parental haploidentical mesenchymal stem cells to promote engraftment in pediatric recipients of unrelated donor umbilical cord blood: results of a phase I-II clinical trial,” Bone Marrow Transplantation, vol. 43, no. 6, pp. 447–454, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. R. E. Newman, D. Yoo, M. A. LeRoux, and A. Danilkovitch-Miagkova, “Treatment of inflammatory diseases with mesenchymal stem cells,” Inflammation and Allergy, vol. 8, no. 2, pp. 110–123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. O. Ringdén, M. Uzunel, B. Sundberg et al., “Tissue repair using allogeneic mesenchymal stem cells for hemorrhagic cystitis, pneumomediastinum and perforated colon,” Leukemia, vol. 21, no. 11, pp. 2271–2276, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. B. E. Strauer, M. Brehm, T. Zeus et al., “Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study,” Journal of the American College of Cardiology, vol. 46, no. 9, pp. 1651–1658, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. C. Viswanathan, Y. Davidson, K. Cooper et al., “Transplantation of autologous bone marrow derived mesenchymal stem cells trans-epicardially in patients in patients undergoing coronary bypass surgery,” Indian Heart Journal, vol. 62, pp. 43–48, 2010. View at Google Scholar
  29. S. L. Chen, W. W. Fang, J. Qian et al., “Improvement of cardiac function after transplantation of autologous bone marrow mesenchymal stem cells in patients with acute myocardial infarction,” Chinese Medical Journal, vol. 117, no. 10, pp. 1443–1448, 2004. View at Google Scholar · View at Scopus
  30. A. Williams, B. Trachtenberg, D. Velazquez et al., “Intramyocardial stem cell Injection in patients with ischemic cardiomyopathy,” Circulation Research, vol. 108, pp. 792–796, 2011. View at Google Scholar
  31. O. Honmou, K. Houkin, T. Matsunaga et al., “Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke,” Brain, vol. 134, no. 4, pp. 1790–1807, 2011. View at Publisher · View at Google Scholar · View at PubMed
  32. N. K. Venkataramana, S. K. V. Kumar, S. Balaraju et al., “Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson's disease,” Translational Research, vol. 155, no. 2, pp. 62–70, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus