Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2011 (2011), Article ID 954275, 8 pages
http://dx.doi.org/10.4061/2011/954275
Review Article

Spleen as a Site for Hematopoiesis of a Distinct Antigen Presenting Cell Type

Division of Biomedical Sciences, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia

Received 4 June 2011; Revised 17 August 2011; Accepted 23 August 2011

Academic Editor: Roland Jurecic

Copyright © 2011 Helen C. O'Neill et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. L. Christensen, D. E. Wright, A. J. Wagers, and I. L. Weissman, “Circulation and chemotaxis of fetal hematopoietic stem cells,” PLoS Biology, vol. 2, no. 3, p. E75, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. J. K. Tan and H. C. O'Neill, “Haematopoietic stem cells in spleen have distinct differentiative potential for antigen presenting cells,” Journal of Cellular and Molecular Medicine, vol. 14, no. 8, pp. 2144–2150, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. F. M. Wolber, E. Leonard, S. Michael, C. M. Orschell-Traycoff, M. C. Yoder, and E. F. Srour, “Roles of spleen and liver in development of the murine hematopoietic system,” Experimental Hematology, vol. 30, no. 9, pp. 1010–1019, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Massberg, P. Schaerli, I. Knezevic-Maramica et al., “Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues,” Cell, vol. 131, no. 5, pp. 994–1008, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. D. E. Wright, S. H. Cheshier, A. J. Wagers, T. D. Randall, J. L. Christensen, and I. L. Weissman, “Cyclophosphamide/granulocyte colony-stimulating factor causes selective mobilization of bone marrow hematopoietic stem cells into the blood after M phase of the cell cycle,” Blood, vol. 97, no. 8, pp. 2278–2285, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. R. A. Abrams, A. Johnston-Early, C. Kramer, J. D. Minna, M. H. Cohen, and A. B. Deisseroth, “Amplification of circulating granulocyte-monocyte stem cell numbers following chemotherapy in patients with extensive small cell carcinoma of the lung,” Cancer Research, vol. 41, no. 1, pp. 35–41, 1981. View at Google Scholar
  7. C. M. Richman, R. S. Weiner, and R. A. Yankee, “Increase in circulating stem cells following chemotherapy in man,” Blood, vol. 47, no. 6, pp. 1031–1039, 1976. View at Google Scholar · View at Scopus
  8. J. K. Tan, P. Periasamy, and H. C. O'Neill, “Delineation of precursors in murine spleen that develop in contact with splenic endothelium to give novel dendritic-like cells,” Blood, vol. 115, no. 18, pp. 3678–3685, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. G. J. Spangrude, S. Heimfeld, and I. L. Weissman, “Purification and characterization of mouse hematopoietic stem cells,” Science, vol. 241, no. 4861, pp. 58–62, 1988. View at Google Scholar · View at Scopus
  10. A. Foudi, K. Hochedlinger, D. van Buren et al., “Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells,” Nature Biotechnology, vol. 27, no. 1, pp. 84–90, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Y. Lai, S. M. Lin, and M. Kondo, “Heterogeneity of Flt3-expressing multipotent progenitors in mouse bone marrow,” Journal of Immunology, vol. 175, no. 8, pp. 5016–5023, 2005. View at Google Scholar · View at Scopus
  12. M. J. Kiel, Ö. H. Yilmaz, T. Iwashita, O. H. Yilmaz, C. Terhorst, and S. J. Morrison, “SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells,” Cell, vol. 121, no. 7, pp. 1109–1121, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Papathanasiou, J. L. Attema, H. Karsunky, X. Jian, S. T. Smale, and I. L. Weissman, “Evaluation of the long-term reconstituting subset of hematopoietic stem cells with CD150,” Stem Cells, vol. 27, no. 10, pp. 2498–2508, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. J. L. Attema, P. Papathanasiou, E. C. Forsberg, J. Xu, S. T. Smale, and I. L. Weissman, “Epigenetic characterization of hematopoietic stem cell differentiation using miniChIP and bisulfite sequencing analysis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 30, pp. 12371–12376, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Morita, A. Iseki, S. Okamura, S. Suzuki, H. Nakauchi, and H. Ema, “Functional characterization of hematopoietic stem cells in the spleen,” Experimental Hematology, vol. 39, no. 3, pp. 351–359.e3, 2011. View at Publisher · View at Google Scholar
  16. A. M. Shatry and R. B. Levy, “Engraftment of splenic tissue as a method to investigate repopulation by hematopoietic cells from host and donor marrow,” Stem Cells and Development, vol. 13, no. 4, pp. 390–399, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Shortman and S. H. Naik, “Steady-state and inflammatory dendritic-cell development,” Nature Reviews Immunology, vol. 7, no. 1, pp. 19–30, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Svensson, A. Maroof, M. Ato, and P. M. Kaye, “Stromal cells direct local differentiation of regulatory dendritic cells,” Immunity, vol. 21, no. 6, pp. 805–816, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Cheong, I. Matos, J. H. Choi et al., “Microbial stimulation fully differentiates monocytes to DC-SIGN/CD209+ dendritic cells for immune T cell areas,” Cell, vol. 143, no. 3, pp. 416–429, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Maldonado-López, T. de Smedt, P. Michel et al., “CD8α+ and CD8α- subclasses of dendritic cells direct the development of distinct T helper cells in vivo,” Journal of Experimental Medicine, vol. 189, no. 3, pp. 587–592, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Pulendran, J. L. Smith, G. Caspary et al., “Distinct dendritic cell subsets differentially regulate the class of immune response in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 3, pp. 1036–1041, 1999. View at Google Scholar · View at Scopus
  22. J. L. Pooley, W. R. Heath, and K. Shortman, “Cutting edge: intravenous soluble antigen is presented to CD4 T cells by CD8- dendritic cells, but cross-presented to CD8 T cells by CD8+ dendritic cells,” Journal of Immunology, vol. 166, no. 9, pp. 5327–5330, 2001. View at Google Scholar · View at Scopus
  23. C. Asselin-Paturel, A. Boonstra, M. Dalod et al., “Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology,” Nature Immunology, vol. 2, no. 12, pp. 1144–1150, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Zhang, H. Tang, Z. Guo et al., “Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells,” Nature Immunology, vol. 5, no. 11, pp. 1124–1133, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. N. V. Serbina, T. P. Salazar-Mather, C. A. Biron, W. A. Kuziel, and E. G. Pamer, “TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection,” Immunity, vol. 19, no. 1, pp. 59–70, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. A. d'Amico and L. Wu, “The early progenitors of mouse dendritic cells and plasmacytoid predendritic cells are within the bone marrow hemopoietic precursors expressing Flt3,” Journal of Experimental Medicine, vol. 198, no. 2, pp. 293–303, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. D. K. Fogg, C. Sibon, C. Miled et al., “A clonogenic bone marrow progenitor specific for macrophages and dendritic cells,” Science, vol. 311, no. 5757, pp. 83–87, 2006. View at Publisher · View at Google Scholar
  28. F. Geissmann, M. G. Manz, S. Jung, M. H. Sieweke, M. Merad, and K. Ley, “Development of monocytes, macrophages, and dendritic cells,” Science, vol. 327, no. 5966, pp. 656–661, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. S. H. Naik, P. Sathe, H. Y. Park et al., “Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo,” Nature Immunology, vol. 8, no. 11, pp. 1217–1226, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Onai, A. Obata-Onai, M. A. Schmid, T. Ohteki, D. Jarrossay, and M. G. Manz, “Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow,” Nature Immunology, vol. 8, no. 11, pp. 1207–1216, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Liu, G. D. Victora, T. A. Schwickert et al., “In vivo analysis of dendritic cell development and homeostasis,” Science, vol. 324, no. 5925, pp. 392–397, 2009. View at Google Scholar · View at Scopus
  32. S. H. Naik, D. Metcalf, A. van Nieuwenhuijze et al., “Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes,” Nature Immunology, vol. 7, no. 6, pp. 663–671, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Kabashima, T. A. Banks, K. M. Ansel, T. T. Lu, C. F. Ware, and J. G. Cyster, “Intrinsic lymphotoxin-β receptor requirement for homeostasis of lymphoid tissue dendritic cells,” Immunity, vol. 22, no. 4, pp. 439–450, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Liu, C. Waskow, X. Liu, K. Yao, J. Hoh, and M. Nussenzweig, “Origin of dendritic cells in peripheral lymphoid organs of mice,” Nature Immunology, vol. 8, no. 6, pp. 578–583, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. J. K. Tan, B. J. Quah, K. L. Griffiths, P. Periasamy, Y. Y. Hey, and H. C. O'Neill, “Identification of a novel antigen cross-presenting cell type in spleen,” Journal of Cellular and Molecular Medicine, vol. 15, no. 5, pp. 1189–1199, 2011. View at Publisher · View at Google Scholar
  36. H. C. O'Neill, H. L. Wilson, B. Quah, J. L. Abbey, G. Despars, and K. Ni, “Dendritic cell development in long-term spleen stromal cultures,” Stem Cells, vol. 22, no. 4, pp. 475–486, 2004. View at Google Scholar · View at Scopus
  37. B. Quah, K. Ni, and H. C. O'Neill, “In vitro hematopoiesis produces a distinct class of immature dendritic cells from spleen progenitors with limeted T cell stimulation,” International Immunology, vol. 16, no. 4, pp. 567–577, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. H. L. Wilson, K. Ni, and H. C. O'Neill, “Identification of progenitor cells in long-term spleen stromal cultures that produce immature dendritic cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 9, pp. 4784–4789, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. G. T. Belz, C. M. Smith, L. Kleinert et al., “Distinct migrating and nonmigrating dendritic cell population are involved in MHC class I-restricted antigen presentation after lung infection with virus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 23, pp. 8670–8675, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Periasamy, J. K. Tan, K. L. Griffiths, and H. C. O'Neill, “Splenic stromal niches support hematopoiesis of dendritic-like cells from precursors in bone marrow and spleen,” Experimental Hematology, vol. 37, no. 9, pp. 1060–1071, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Ni and H. C. O'Neill, “Development of dendritic cells from GM-CSF-/- mice in vitro: GM-CSF enhances production and survival of cells,” Developmental Immunology, vol. 8, no. 2, pp. 133–146, 2001. View at Google Scholar · View at Scopus
  42. C. Beauvillain, Y. Delneste, M. Scotet et al., “Neutrophils efficiently cross-prime naive T cells in vivo,” Blood, vol. 110, no. 8, pp. 2965–2973, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Hemmi, J. Idoyaga, K. Suda et al., “A new triggering receptor expressed on myeloid cells (Trem) family member, trem-like 4, binds to dead cells and is a DNAX activation protein 12-linked marker for subsets of mouse macrophages and dendritic cells,” Journal of Immunology, vol. 182, no. 3, pp. 1278–1286, 2009. View at Google Scholar · View at Scopus
  44. G. Despars, K. Ni, A. Bouchard, T. J. O'Neill, and H. C. O'Neill, “Molecular definition of an in vitro niche for dendritic cell development,” Experimental Hematology, vol. 32, no. 12, pp. 1182–1193, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. G. Despars and H. C. O'Neill, “Splenic endothelial cell lines support development of dendritic cells from bone marrow,” Stem Cells, vol. 24, no. 6, pp. 1496–1504, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. R. A. Himton and H. C. O'Neill, “In vitro production of distinct deudvitic—like antigen presenting cells from self-renewing hematopoietre stem cells,” Journal of Leukocyte Biology. In press.
  47. H. L. Wilson and H. C. O'Neill, “Dynamics of dendritic cell development from precursors maintained in stroma-dependent long-term cultures,” Immunology and Cell Biology, vol. 81, no. 2, pp. 144–151, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. H. L. Wilson and H. C. O'Neill, “Identification of differentially expressed genes representing dendritic cell precursors and their progeny,” Blood, vol. 102, no. 5, pp. 1661–1669, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. J. K. H. Tan and H. C. O'Neill, “Investigation of murine spleen as a niche for hematopoiesis,” Transplantation, vol. 89, no. 2, pp. 140–145, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Merad, M. G. Manz, H. Karsunky et al., “Langerhans cells renew in the skin throughout life under steady-state conditions,” Nature Immunology, vol. 3, no. 12, pp. 1135–1141, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. B. Ajami, J. L. Bennett, C. Krieger, W. Tetzlaff, and F. M. Rossi, “Local self-renewal can sustain CNS microglia maintenance and function throughout adult life,” Nature Neuroscience, vol. 10, no. 12, pp. 1538–1543, 2007. View at Publisher · View at Google Scholar · View at Scopus