Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2012, Article ID 103503, 12 pages
http://dx.doi.org/10.1155/2012/103503
Review Article

Neural Crest Stem Cells from Dental Tissues: A New Hope for Dental and Neural Regeneration

Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), 48940 Bizkaia, Leioa, Spain

Received 15 June 2012; Revised 13 August 2012; Accepted 5 September 2012

Academic Editor: Sabine Wislet-Gendebien

Copyright © 2012 Gaskon Ibarretxe et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Rama, S. Matuska, G. Paganoni, A. Spinelli, M. De Luca, and G. Pellegrini, “Limbal stem-cell therapy and long-term corneal regeneration,” The New England Journal of Medicine, vol. 363, no. 2, pp. 147–155, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Hayani, E. Lampeter, D. Viswanatha, D. Morgan, and S. N. Salvi, “First report of autologous cord blood transplantation in the treatment of a child with leukemia,” Pediatrics, vol. 119, no. 1, pp. e296–e300, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Greenow and A. R. Clarke, “Controlling the stem cell compartment and regeneration in vivo: the role of pluripotency pathways,” Physiological Reviews, vol. 92, no. 1, pp. 75–99, 2012. View at Google Scholar
  4. L. Teri, “Behavior and caregiver burden: behavioral problems in patients with Alzheimer disease and its association with caregiver distress,” Alzheimer Disease and Associated Disorders, vol. 11, no. 4, pp. S35–S38, 1997. View at Google Scholar · View at Scopus
  5. O. L. Lopez, “The growing burden of Alzheimer's disease,” The American Journal of Managed Care, vol. 17, supplement 13, pp. S339–S345, 2011. View at Google Scholar
  6. M. V. Sofroniew, “Molecular dissection of reactive astrogliosis and glial scar formation,” Trends in Neurosciences, vol. 32, no. 12, pp. 638–647, 2009. View at Google Scholar
  7. A. Ramón-Cueto, M. I. Cordero, F. F. Santos-Benito, and J. Avila, “Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia,” Neuron, vol. 25, no. 2, pp. 425–435, 2000. View at Google Scholar · View at Scopus
  8. A. Ramón-Cueto and C. Muñoz-Quiles, “Clinical application of adult olfactory bulb ensheathing glia for nervous system repair,” Experimental Neurology, vol. 229, no. 1, pp. 181–194, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. G. L. Ming and H. Song, “Adult neurogenesis in the mammalian brain: significant answers and significant questions,” Neuron, vol. 70, no. 4, pp. 687–702, 2011. View at Google Scholar
  10. T. D. Palmer, P. H. Schwartz, P. Taupin, B. Kaspar, S. A. Stein, and F. H. Gage, “Progenitor cells from human brain after death,” Nature, vol. 411, no. 6833, pp. 42–43, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. H. K. Väänänen, “Mesenchymal stem cells,” Annals of Medicine, vol. 37, no. 7, pp. 469–479, 2005. View at Google Scholar
  12. D. Woodbury, E. J. Schwarz, D. J. Prockop, and I. B. Black, “Adult rat and human bone marrow stromal cells differentiate into neurons,” Journal of Neuroscience Research, vol. 61, no. 4, pp. 364–370, 2000. View at Google Scholar
  13. G. C. Kopen, D. J. Prockop, and D. G. Phinney, “Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 19, pp. 10711–10716, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Muñoz-Elias, A. J. Marcus, T. M. Coyne, D. Woodbury, and I. B. Black, “Adult bone marrow stromal cells in the embryonic brain: engraftment, migration, differentiation, and long-term survival,” Journal of Neuroscience, vol. 24, no. 19, pp. 4585–4595, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Wislet-Gendebien, G. Hans, P. Leprince, J. M. Rigo, G. Moonen, and B. Rogister, “Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype,” Stem Cells, vol. 23, no. 3, pp. 392–402, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. K. J. Cho, K. A. Trzaska, S. J. Greco et al., “Neurons derived from human mesenchymal stem cells show synaptic transmission and can be induced to produce the neurotransmitter substance P by interleukin-1α,” Stem Cells, vol. 23, no. 3, pp. 383–391, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. C. B. Choi, Y. K. Cho, K. V. Prakash et al., “Analysis of neuron-like differentiation of human bone marrow mesenchymal stem cells,” Biochemical and Biophysical Research Communications, vol. 350, no. 1, pp. 138–146, 2006. View at Google Scholar
  18. P. Lu, A. Blesch, and M. H. Tuszynski, “Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact?” Journal of Neuroscience Research, vol. 77, no. 2, pp. 174–191, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Bertani, P. Malatesta, G. Volpi, P. Sonego, and R. Perris, “Neurogenic potential of human mesenchymal stem cells revisited: analysis by immunostaining, time-lapse video and microarray,” Journal of Cell Science, vol. 118, part 17, pp. 3925–3936, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Dezawa, H. Kanno, M. Hoshino et al., “Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation,” The Journal of Clinical Investigation, vol. 113, no. 12, pp. 1701–1710, 2004. View at Google Scholar
  21. B. Neuhuber, G. Gallo, L. Howard, L. Kostura, A. Mackay, and I. Fischer, “Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype,” Journal of Neuroscience Research, vol. 77, no. 2, pp. 192–204, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. D. J. Maltman, S. A. Hardy, and S. A. Przyborski, “Role of mesenchymal stem cells in neurogenesis and nervous system repair,” Neurochemistry International, vol. 59, no. 3, pp. 347–356, 2011. View at Google Scholar
  23. D. G. Phinney and D. J. Prockop, “Concise review: Mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair - Current views,” Stem Cells, vol. 25, no. 11, pp. 2896–2902, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Gebler, O. Zabel, and B. Seliger, “The immunomodulatory capacity of mesenchymal stem cells,” Trends in Molecular Medicine, vol. 18, no. 2, pp. 128–134, 2012. View at Google Scholar
  25. D. J. Prockop and J. Y. Oh, “Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation,” Molecular Therapy, vol. 20, no. 1, pp. 14–20, 2012. View at Google Scholar
  26. L. Crigler, R. C. Robey, A. Asawachaicharn, D. Gaupp, and D. G. Phinney, “Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis,” Experimental Neurology, vol. 198, no. 1, pp. 54–64, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. D. G. Phinney, K. Hill, C. Michelson et al., “Biological activities encoded by the murine mesenchymal stem cell transcriptome provide a basis for their developmental potential and broad therapeutic efficacy,” Stem Cells, vol. 24, no. 1, pp. 186–198, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Kamada, M. Koda, M. Dezawa et al., “Transplantation of human bone marrow stromal cell-derived Schwann cells reduces cystic cavity and promotes functional recovery after contusion injury of adult rat spinal cord,” Neuropathology, vol. 31, no. 1, pp. 48–58, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Dharmasaroja, “Bone marrow-derived mesenchymal stem cells for the treatment of ischemic stroke,” Journal of Clinical Neuroscience, vol. 16, no. 1, pp. 12–20, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Uccelli, L. Moretta, and V. Pistoia, “Mesenchymal stem cells in health and disease,” Nature Reviews Immunology, vol. 8, no. 9, pp. 726–736, 2008. View at Google Scholar
  31. E. Ben-Ami, S. Berrih-Aknin, and A. Miller, “Mesenchymal stem cells as an immunomodulatory therapeutic strategy for autoimmune diseases,” Autoimmunity Reviews, vol. 10, no. 7, pp. 410–415, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. D. J. Prockop and J. Y. Oh, “Medical therapies with adult stem/progenitor cells (MSCs): a backward journey from dramatic results in vivo to the cellular and molecular explanations,” Journal of Cellular Biochemistry, vol. 113, no. 5, pp. 1460–1469, 2012. View at Google Scholar
  33. A. Chen, B. Siow, A. M. Blamire, M. Lako, and G. J. Clowry, “Transplantation of magnetically labeled mesenchymal stem cells in a model of perinatal brain injury,” Stem Cell Research, vol. 5, no. 3, pp. 255–266, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. X. Wang, H. Willenbring, Y. Akkari et al., “Cell fusion is the principal source of bone-marrow-derived hepatocytes,” Nature, vol. 422, no. 6934, pp. 897–901, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Acquistapace, T. Bru, P. F. Lesault et al., “Human mesenchymal stem cells reprogram adult cardiomyocytes toward a progenitor-like state through partial cell fusion and mitochondria transfer,” Stem Cells, vol. 29, no. 5, pp. 812–824, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. H. Song, K. Pinkernell, and E. Alt, “Stem cell-induced cardiac regeneration: fusion/mitochondrial exchange and/or transdifferentiation?” Cell Cycle, vol. 10, no. 14, pp. 2281–2286, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. J. L. Spees, S. D. Olson, M. J. Whitney, and D. J. Prockop, “Mitochondrial transfer between cells can rescue aerobic respiration,” Proceedings of the National Academy of Sciences of USA, vol. 103, no. 5, pp. 1283–1288, 2006. View at Google Scholar
  38. Y. Zhuge, Z. J. Liu, and O. C. Velazquez, “Adult stem cel diferentiation and trafficking and their implications in disease,” Advances in Experimental Medicine and Biology, vol. 695, pp. 169–183, 2010. View at Google Scholar
  39. S. Gronthos, M. Mankani, J. Brahim, P. G. Robey, and S. Shi, “Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 25, pp. 13625–13630, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. Chai, X. Jiang, Y. Ito et al., “Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis,” Development, vol. 127, no. 8, pp. 1671–1679, 2000. View at Google Scholar · View at Scopus
  41. K. Janebodin, O. V. Horst, N. Ieronimakis et al., “Isolation and characterization of neural crest-derived stem cells from dental pulp of neonatal mice,” PLoS One, vol. 6, no. 11, article e27526, 2011. View at Google Scholar
  42. G. T. Huang, S. Gronthos, and S. Shi, “Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine,” Journal of Dental Research, vol. 88, no. 9, pp. 792–806, 2009. View at Google Scholar
  43. B. M. Seo, M. Miura, S. Gronthos et al., “Investigation of multipotent postnatal stem cells from human periodontal ligament,” Lancet, vol. 364, no. 9429, pp. 149–155, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Gronthos, J. Brahim, W. Li et al., “Stem cell properties of human dental pulp stem cells,” Journal of Dental Research, vol. 81, no. 8, pp. 531–535, 2002. View at Google Scholar · View at Scopus
  45. R. M. Davidson, “Neural form of voltage-dependent sodium current in human cultured dental pulp cells,” Archives of Oral Biology, vol. 39, no. 7, pp. 613–620, 1994. View at Google Scholar
  46. M. Miura, S. Gronthos, M. Zhao, B. Lu, L. W. Fisher, P. G. Robey et al., “SHED: stem cells from human exfoliated deciduous teeth,” Proceedings of the National Academy of Sciences of USA, vol. 100, no. 10, pp. 5807–5812, 2003. View at Google Scholar
  47. A. Arthur, G. Rychkov, S. Shi, S. A. Koblar, and S. Gronthose, “Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues,” Stem Cells, vol. 26, no. 7, pp. 1787–1795, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. K. J. L. Fernandes, N. R. Kobayashi, C. J. Gallagher et al., “Analysis of the neurogenic potential of multipotent skin-derived precursors,” Experimental Neurology, vol. 201, no. 1, pp. 32–48, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Amoh, K. Katsuoka, and R. M. Hoffman, “The advantages of hair follicle pluripotent stem cells over embryonic stem cells and induced pluripotent stem cells for regenerative medicine,” Journal of Dermatological Science, vol. 60, no. 3, pp. 131–137, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. G. A. Tonti and F. Mannello, “From bone marrow to therapeutic applications: different behaviour and genetic/epigenetic stability during mesenchymal stem cell expansion in autologous and foetal bovine sera?” International Journal of Developmental Biology, vol. 52, no. 8, pp. 1023–1032, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Atari, M. Barajas, F. Hernández-Alfaro et al., “Isolation of pluripotent stem cells from human third molar dental pulp,” Histology and Histopathology, vol. 26, no. 8, pp. 1057–1070, 2011. View at Google Scholar
  52. A. Abzhanov, E. Tzahor, A. B. Lassar, and C. J. Tabin, “Dissimilar regulation of cell differentiation in mesencephalic (cranial) and sacral (trunk) neural crest cells in vitro,” Development, vol. 130, no. 19, pp. 4567–4579, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Shi and S. Gronthos, “Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp,” Journal of Bone and Mineral Research, vol. 18, no. 4, pp. 696–704, 2003. View at Google Scholar · View at Scopus
  54. X. Zhao, P. Gong, Y. Lin, J. Wang, X. Yang, and X. Cai, “Characterization of α-smooth muscle actin positive cells during multilineage differentiation of dental pulp stem cells,” Cell Proliferation, vol. 45, no. 3, pp. 259–265, 2012. View at Google Scholar
  55. E. J. Woods, B. C. Perry, J. J. Hockema, L. Larson, D. Zhou, and W. S. Goebel, “Optimized cryopreservation method for human dental pulp-derived stem cells and their tissues of origin for banking and clinical use,” Cryobiology, vol. 59, no. 2, pp. 150–157, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. X. Yang, W. Zhang, J. van den Dolder et al., “Multilineage potential of STRO-1+ rat dental pulp cells in vitro,” Journal of Tissue Engineering and Regenerative Medicine, vol. 1, no. 2, pp. 128–135, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Yu, H. He, C. Tang et al., “Differentiation potential of STRO-1+ dental pulp stem cells changes during cell passaging,” BMC Cell Biology, vol. 11, article 32, 2010. View at Google Scholar
  58. S. Batouli, M. Miura, J. Brahim et al., “Comparison of stem-cell-mediated osteogenesis and dentinogenesis,” Journal of Dental Research, vol. 82, no. 12, pp. 976–981, 2003. View at Google Scholar · View at Scopus
  59. K. Hara, Y. Yamada, S. Nakamura, E. Umemura, K. Ito, and M. Ueda, “Potential characteristics of stem cells from human exfoliated deciduous teeth compared with bone marrow-derived mesenchymal stem cells for mineralized tissue-forming cell biology,” Journal of Endodontics, vol. 37, no. 12, pp. 1647–1652, 2011. View at Google Scholar
  60. J. Yu, Y. Wang, Z. Deng et al., “Odontogenic capability: bone marrow stromal stem cells versus dental pulp stem cells,” Biology of the Cell, vol. 99, no. 8, pp. 465–474, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Atari, C. Gil-Recio, M. Fabregat et al., “Dental pulp of the third molar: a new source of pluripotent-like stem cells,” Journal of Cell Science, vol. 125, part 14, pp. 3343–3356, 2012. View at Google Scholar
  62. J. Yu, M. A. Vodyanik, K. Smuga-Otto et al., “Induced pluripotent stem cell lines derived from human somatic cells,” Science, vol. 318, no. 5858, pp. 1917–1920, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. O. Trubiani, S. F. Zalzal, R. Paganelli et al., “Expression profile of the embryonic markers nanog, OCT-4, SSEA-1, SSEA-4, and Frizzled-9 receptor in human periodontal ligament mesenchymal stem cells,” Journal of Cellular Physiology, vol. 225, no. 1, pp. 123–131, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. I. Kerkis, A. Kerkis, D. Dozortsev et al., “Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers,” Cells Tissues Organs, vol. 184, no. 3-4, pp. 105–116, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. J. Xu, W. Wang, Y. Kapila, J. Lotz, and S. Kapila, “Multiple differentiation capacity of STRO-1+/CD146+ PDL Mesenchymal Progenitor Cells,” Stem Cells and Development, vol. 18, no. 3, pp. 487–496, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. E. Anitua, M. Sánchez, A. T. Nurden, P. Nurden, G. Orive, and I. Andía, “New insights into and novel applications for platelet-rich fibrin therapies,” Trends in Biotechnology, vol. 24, no. 5, pp. 227–234, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. B. M. Seo, M. Miura, W. Sonoyama, C. Coppe, R. Stanyon, and S. Shi, “Recovery of stem cells from cryopreserved periodontal ligament,” Journal of Dental Research, vol. 84, no. 10, pp. 907–912, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Rothová, R. Peterková, and A. S. Tucker, “Fate map of the dental mesenchyme: dynamic development of the dental papilla and follicle,” Developmental Biology, vol. 366, no. 2, pp. 244–254, 2012. View at Google Scholar
  69. W. Sonoyama, Y. Liu, D. Fang et al., “Mesenchymal stem cell-mediated functional tooth regeneration in swine,” PLoS One, vol. 1, article e79, 2006. View at Google Scholar
  70. A. Bakopoulou, G. Leyhausen, J. Volk et al., “Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP),” Archives of Oral Biology, vol. 56, no. 7, pp. 709–721, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. G. T. J. Huang, W. Sonoyama, Y. Liu, H. Liu, S. Wang, and S. Shi, “The hidden treasure in apical papilla: the potential role in pulp/dentin regeneration and bioroot engineering,” Journal of Endodontics, vol. 34, no. 6, pp. 645–651, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. G. Ding, W. Wang, Y. Liu et al., “Effect of cryopreservation on biological and immunological properties of stem cells from apical papilla,” Journal of Cellular Physiology, vol. 223, no. 2, pp. 415–422, 2010. View at Google Scholar
  73. C. Morsczeck, W. Götz, J. Schierholz et al., “Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth,” Matrix Biology, vol. 24, no. 2, pp. 155–165, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. S. Yao, F. Pan, V. Prpic, and G. E. Wise, “Differentiation of stem cells in the dental follicle,” Journal of Dental Research, vol. 87, no. 8, pp. 767–771, 2008. View at Google Scholar
  75. M. J. Honda, M. Imaizumi, S. Tsuchiya, and C. Morsczeck, “Dental follicle stem cells and tissue engineering,” Journal of Oral Sciences, vol. 52, no. 4, pp. 541–552, 2010. View at Google Scholar
  76. K. Handa, M. Saito, A. Tsunoda et al., “Progenitor cells from dental follicle are able to form cementum matrix in vivo,” Connective Tissue Research, vol. 43, no. 2-3, pp. 406–408, 2002. View at Google Scholar · View at Scopus
  77. M. S. Prasad, T. Sauka-Spengler, and C. Labonne, “Induction of the neural crest state: control of stem cell attributes by gene regulatory, post-transcriptional and epigenetic interactions,” Developmental Biology, vol. 366, no. 1, pp. 10–21, 2012. View at Google Scholar
  78. J. P. Thiery, H. Acloque, R. Y. J. Huang, and M. A. Nieto, “Epithelial-mesenchymal transitions in development and disease,” Cell, vol. 139, no. 5, pp. 871–890, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. D. Medici and R. Kalluri, “Endothelial-mesenchymal transition and its contribution to the emergence of stem cell phenotype,” Seminars in Cancer Biology, vol. 22, pp. 5379–5684, 2012. View at Google Scholar
  80. L. A. van Meeteren and P. ten Dijke, “Regulation of endothelial cell plasticity by TGF-β,” Cell and Tissue Research, vol. 347, no. 1, pp. 177–186, 2012. View at Google Scholar
  81. Y. Amoh, L. Li, K. Katsuoka, and R. M. Hoffman, “Embryonic development of hair follicle pluripotent stem (hfPS) cells,” Medical Molecular Morphology, vol. 43, no. 2, pp. 123–127, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. J. G. Toma, I. A. McKenzie, D. Bagli, and F. D. Miller, “Isolation and characterization of multipotent skin-derived precursors from human skin,” Stem Cells, vol. 23, no. 6, pp. 727–737, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. M. Sieber-Blum and Y. Hu, “Epidermal neural crest stem cells (EPI-NCSC) and pluripotency,” Stem Cell Reviews, vol. 4, no. 4, pp. 256–260, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. A. Uchugonova, J. Duong, N. Zhang, K. König, and R. M. Hoffman, “The bulge area is the origin of nestin-expressing pluripotent stem cells of the hair follicle,” Journal of Cellular Biochemistry, vol. 112, no. 8, pp. 2046–2050, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. C. E. Wong, C. Paratore, M. T. Dours-Zimmermann et al., “Neural crest-derived cells with stem cell features can be traced back to multiple lineages in the adult skin,” Journal of Cell Biology, vol. 175, no. 6, pp. 1005–1015, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. I. A. McKenzie, J. Biernaskie, J. G. Toma, R. Midha, and F. D. Miller, “Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system,” Journal of Neuroscience, vol. 26, no. 24, pp. 6651–6660, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. Y. Amoh, L. Li, R. Campillo et al., “Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 49, pp. 17734–17738, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. Y. F. Hu, K. Gourab, C. Wells, O. Clewes, B. D. Schmit, and M. Sieber-Blum, “Epidermal neural crest stem cell (EPI-NCSC)-mediated recovery of sensory function in a mouse model of spinal cord injury,” Stem Cell Reviews and Reports, vol. 6, no. 2, pp. 186–198, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. F. Liu, A. Uchugonova, H. Kimura et al., “The bulge area is the major hair follicle source of nestin-expressing pluripotent stem cells which can repair the spinal cord compared to the dermal papilla,” Cell Cycle, vol. 10, no. 5, pp. 830–839, 2011. View at Publisher · View at Google Scholar · View at Scopus
  90. Y. Amoh, M. Kanoh, S. Niiyama et al., “Human hair follicle pluripotent stem (hfPS) cells promote regeneration of peripheral-nerve injury: an advantageous alternative to ES and iPS cells,” Journal of Cellular Biochemistry, vol. 107, no. 5, pp. 1016–1020, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. A. H. Yen and P. T. Sharpe, “Stem cells and tooth tissue engineering,” Cell and Tissue Research, vol. 331, no. 1, pp. 359–372, 2008. View at Google Scholar
  92. G. Bluteau, H. U. Luder, C. De Bari, and T. A. Mitsiadis, “Stem cells for tooth engineering,” European Cells and Materials, vol. 16, pp. 1–9, 2008. View at Google Scholar · View at Scopus
  93. A. A. Volponi, Y. Pang, and P. T. Sharpe, “Stem cell-based biological tooth repair and regeneration,” Trends in Cell Biology, vol. 20, no. 12, pp. 715–722, 2010. View at Google Scholar
  94. T. Srisuwan, D. J. Tilkorn, S. Al-Benna, K. Abberton, H. H. Messer, and E. W. Thompson, “Revascularization and tissue regeneration of an empty root canal space is enhanced by a direct blood supply and stem cells,” Dental Traumatology. In press. View at Publisher · View at Google Scholar
  95. G. T. J. Huang, T. Yamaza, L. D. Shea et al., “Stem/Progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model,” Tissue Engineering A, vol. 16, no. 2, pp. 605–615, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. G. Laino, F. Carinci, A. Graziano et al., “In vitro bone production using stem cells derived from human dental pulp,” Journal of Craniofacial Surgery, vol. 17, no. 3, pp. 511–515, 2006. View at Google Scholar · View at Scopus
  97. J. B. Park, “Use of cell-based approaches in maxillary sinus augmentation procedures,” Journal of Craniofacial Surgery, vol. 21, no. 2, pp. 557–560, 2010. View at Google Scholar
  98. L. J. Heitz-Mayfield, “Diagnosis and management of peri-implant diseases,” The Australian Dental Journal, vol. 53, supplement 1, pp. S43–S48, 2008. View at Google Scholar
  99. B. E. Pjetursson, U. Brägger, N. P. Lang, and M. Zwahlen, “Comparison of survival and complication rates of tooth-supported fixed dental prostheses (FDPs) and implant-supported FDPs and single crowns (SCs),” Clinical Oral Implants Research, vol. 18, no. 3, pp. 97–113, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. C. Fransson, U. Lekholm, T. Jemt, and T. Berglundh, “Prevalence of subjects with progressive bone loss at implants,” Clinical Oral Implants Research, vol. 16, no. 4, pp. 440–446, 2005. View at Publisher · View at Google Scholar · View at Scopus
  101. S. H. Kim, K. H. Kim, B. M. Seo et al., “Alveolar bone regeneration by transplantation of periodontal ligament stem cells and bone marrow stem cells in a canine peri-implant defect model: a pilot study,” Journal of Periodontology, vol. 80, no. 11, pp. 1815–1823, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. E. Ikeda, R. Morita, K. Nakao et al., “Fully functional bioengineered tooth replacement as an organ replacement therapy,” Proceedings of the National Academy of Sciences of USA, vol. 106, no. 32, pp. 13475–13480, 2009. View at Google Scholar
  103. M. Oshima, M. Mizuno, A. Imamura et al., “Functional tooth regeneration using a bioengineered tooth unit as a mature organ replacement regenerative therapy,” PLoS One, vol. 6, no. 7, article e21531, 2011. View at Google Scholar
  104. B. Hu, A. Nadiri, S. Kuchler-Bopp, F. Perrin-Schmitt, H. Peters, and H. Lesot, “Tissue engineering of tooth crown, root, and periodontium,” Tissue Engineering, vol. 12, no. 8, pp. 2069–2075, 2006. View at Publisher · View at Google Scholar · View at Scopus
  105. Y. Shinmura, S. Tsuchiya, K. I. Hata, and M. J. Honda, “Quiescent epithelial cell rests of malassez can differentiate into ameloblast-like cells,” Journal of Cellular Physiology, vol. 217, no. 3, pp. 728–738, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. E. Nakagawa, T. Itoh, H. Yoshie, and I. Satokata, “Odontogenic potential of post-natal oral mucosal epithelium,” Journal of Dental Research, vol. 88, no. 3, pp. 219–223, 2009. View at Publisher · View at Google Scholar · View at Scopus
  107. G. Ibarretxe, M. Alvarez, M. Cañavate -L, E. Hilario, A. Maitane, and U. Fernando, “Cell reprogramming, IPS limitations and overcoming strategies in dental bioengineering,” Stem Cells International, vol. 2012, Article ID 365932, 2012. View at Google Scholar
  108. N. J. Abbott, “Astrocyte-endothelial interactions and blood-brain barrier permeability,” Journal of Anatomy, vol. 200, no. 6, pp. 629–638, 2002. View at Google Scholar
  109. M. Tremblay, B. Stevens, A. Sierra, H. Wake, A. Bessis, and A. Nimmerjahn, “The role of microglia in the healthy brain,” The Journal of Neuroscience, vol. 31, no. 45, pp. 16064–16069, 2011. View at Google Scholar
  110. M. Lehnhardt, H. H. Homann, A. Daigeler, J. Hauser, P. Palka, and H. U. Steinau, “Major and lethal complications of liposuction: a review of 72 cases in germany between 1998 and 2002,” Plastic and Reconstructive Surgery, vol. 121, no. 6, pp. 396e–403e, 2008. View at Publisher · View at Google Scholar · View at Scopus
  111. K. Kadar, M. Kiraly, B. Porcsalmy et al., “Differentiation potential of stem cells from human dental origin—promise for tissue engineering.,” Journal of Physiology and Pharmacology, vol. 60, pp. 167–175, 2009. View at Google Scholar · View at Scopus
  112. L. Pierdomenico, L. Bonsi, M. Calvitti et al., “Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp,” Transplantation, vol. 80, no. 6, pp. 836–842, 2005. View at Publisher · View at Google Scholar · View at Scopus
  113. T. Yamaza, A. Kentaro, C. Chen et al., “Immunomodulatory properties of stem cells from human exfoliated deciduous teeth,” Stem Cell Research & Therapy, vol. 1, no. 1, article 5, 2010. View at Google Scholar
  114. M. Király, B. Porcsalmy, Á. Pataki et al., “Simultaneous PKC and cAMP activation induces differentiation of human dental pulp stem cells into functionally active neurons,” Neurochemistry International, vol. 55, no. 5, pp. 323–332, 2009. View at Publisher · View at Google Scholar · View at Scopus
  115. A. H. C. Huang, B. R. Snyder, P. H. Cheng, and A. W. S. Chan, “Putative dental pulp-derived stem/stromal cells promote proliferation and differentiation of endogenous neural cells in the hippocampus of mice,” Stem Cells, vol. 26, no. 10, pp. 2654–2663, 2008. View at Publisher · View at Google Scholar · View at Scopus
  116. M. Király, K. Kádár, D. B. Horváthy et al., “Integration of neuronally predifferentiated human dental pulp stem cells into rat brain in vivo,” Neurochemistry International, vol. 59, no. 3, pp. 371–381, 2011. View at Publisher · View at Google Scholar · View at Scopus
  117. I. V. Nosrat, C. A. Smith, P. Mullally, L. Olson, and C. A. Nosrat, “Dental pulp cells provide neurotrophic support for dopaminergic neurons and differentiate into neurons in vitro; implications for tissue engineering and repair in the nervous system,” European Journal of Neuroscience, vol. 19, no. 9, pp. 2388–2398, 2004. View at Publisher · View at Google Scholar · View at Scopus
  118. A. Arthur, S. Shi, A. C. W. Zannettino, N. Fujii, S. Gronthos, and S. A. Koblar, “Implanted adult human dental pulp stem cells induce endogenous axon guidance,” Stem Cells, vol. 27, no. 9, pp. 2229–2237, 2009. View at Publisher · View at Google Scholar · View at Scopus
  119. G. Ding, Y. Liu, Y. An et al., “Suppression of T cell proliferation by root apical papilla stem cells in vitro,” Cells Tissues Organs, vol. 191, no. 5, pp. 357–364, 2010. View at Publisher · View at Google Scholar · View at Scopus
  120. Y. Ziv, H. Avidan, S. Pluchino, G. Martino, and M. Schwartz, “Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 35, pp. 13174–13179, 2006. View at Publisher · View at Google Scholar · View at Scopus
  121. I. V. Nosrat, J. Widenfalk, L. Olson, and C. A. Nosrat, “Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury,” Developmental Biology, vol. 238, no. 1, pp. 120–132, 2001. View at Publisher · View at Google Scholar · View at Scopus
  122. F. M. Almeida, S. A. Marques, B. D. Ramalho et al., “Human dental pulp cells: a new source of cell therapy in a mouse model of compressive spinal cord injury,” Journal of Neurotrauma, vol. 28, no. 9, pp. 1939–1949, 2011. View at Google Scholar