Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2012, Article ID 108340, 10 pages
http://dx.doi.org/10.1155/2012/108340
Research Article

Feline Neural Progenitor Cells I: Long-Term Expansion under Defined Culture Conditions

1Department of Ophthalmology, Ophthalmology Research Laboratories, The Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA
2Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200011, China

Received 30 September 2011; Accepted 3 February 2012

Academic Editor: Heuy-Ching Hetty Wang

Copyright © 2012 Jing Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. H. Gage, “Mammalian neural stem cells,” Science, vol. 287, no. 5457, pp. 1433–1438, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. D. van der Kooy and S. Weiss, “Why stem cells?” Science, vol. 287, no. 5457, pp. 1439–1441, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. R. J. Thomas, A. D. Hope, P. Hourd et al., “Automated, serum-free production of ctx0e03: a therapeutic clinical grade human neural stem cell line,” Biotechnology Letters, vol. 31, no. 8, pp. 1167–1172, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Lundberg, A. Martínez-Serrano, E. Cattaneo, R. D. G. McKay, and A. Björklund, “Survival, integration, and differentiation of neural stem cell lines after transplantation to the adult rat striatum,” Experimental Neurology, vol. 145, no. 2, pp. 342–360, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Olsson, “Incorporation of mouse neural progenitors transplanted into the rat embryonic forebrain is developmentally regulated and dependent on regional and adhesive properties,” European Journal of Neuroscience, vol. 10, no. 1, pp. 71–85, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Hori, T. F. Ng, M. Shatos, H. Klassen, J. W. Streilein, and M. J. Young, “Neural progenitor cells lack immunogenicity and resist destruction as allografts,” Stem Cells, vol. 21, no. 4, pp. 405–416, 2003. View at Google Scholar · View at Scopus
  7. H. Klassen, K. Warfvinge, P. H. Schwartz et al., “Isolation of progenitor cells from gfp-transgenic pigs and transplantation to the retina of allorecipients,” Cloning and Stem Cells, vol. 10, no. 3, pp. 391–402, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. S. J. Van Hoffelen, M. J. Young, M. A. Shatos, and D. S. Sakaguchi, “Incorporation of murine brain progenitor cells into the developing mammalian retina,” Investigative Ophthalmology and Visual Science, vol. 44, no. 1, pp. 426–434, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. P. G. Hess, “Risk of tumorigenesis in first-in-human trials of embryonic stem cell neural derivatives: ethics in the face of long-term uncertainty,” Accountability in Research, vol. 16, no. 4, pp. 175–198, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Behrstock, A. D. Ebert, S. Klein, M. Schmitt, J. M. Moore, and C. N. Svendsen, “Lesion-induced increase in survival and migration of human neural progenitor cells releasing gdnf,” Cell Transplantation, vol. 17, no. 7, pp. 753–762, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. A. D. Ebert, E. L. McMillan, and C. N. Svendsen, “Isolating, expanding, and infecting human and rodent fetal neural progenitor cells,” Current Protocols in Stem Cell Biology, no. 6, pp. 2D.2.1–2D.2.16, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Klassen, “Transplantation of cultured progenitor cells to the mammalian retina,” Expert Opinion on Biological Therapy, vol. 6, no. 5, pp. 443–451, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Klassen, P. H. Schwartz, B. Ziaeian et al., “Neural precursors isolated from the developing cat brain show retinal integration following transplantation to the retina of the dystrophic cat,” Veterinary Ophthalmology, vol. 10, no. 4, pp. 245–253, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Wang, D. R. Martin, H. J. Baker et al., “Neural progenitor cell transplantation and imaging in a large animal model,” Neuroscience Research, vol. 59, no. 3, pp. 327–340, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. M. W. Pfaffl, “A new mathematical model for relative quantification in real-time rt-pcr,” Nucleic Acids Research, vol. 29, no. 9, article e45, 2001. View at Google Scholar · View at Scopus
  16. H. Klassen, M. R. Schwartz, A. H. Bailey, and M. J. Young, “Surface markers expressed by multipotent human and mouse neural progenitor cells include tetraspanins and non-protein epitopes,” Neuroscience Letters, vol. 312, no. 3, pp. 180–182, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. P. H. Schwartz, P. J. Bryant, T. J. Fuja, H. Su, D. K. O'Dowd, and H. Klassen, “Isolation and characterization of neural progenitor cells from post-mortem human cortex,” Journal of Neuroscience Research, vol. 74, no. 6, pp. 838–851, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. P. H. Schwartz, H. Nethercott, I. I. Kirov, B. Ziaeian, M. J. Young, and H. Klassen, “Expression of neurodevelopmental markers by cultured porcine neural precursor cells,” Stem Cells, vol. 23, no. 9, pp. 1286–1294, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Anderson, R. M. Burnstein, X. He et al., “Gene expression changes in long term expanded human neural progenitor cells passaged by chopping lead to loss of neurogenic potential in vivo,” Experimental Neurology, vol. 204, no. 2, pp. 512–524, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. L. S. Wright, K. R. Prowse, K. Wallace, M. H. K. Linskens, and C. N. Svendsen, “Human progenitor cells isolated from the developing cortex undergo decreased neurogenesis and eventual senescence following expansion in vitro,” Experimental Cell Research, vol. 312, no. 11, pp. 2107–2120, 2006. View at Publisher · View at Google Scholar