Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2012, Article ID 128732, 11 pages
http://dx.doi.org/10.1155/2012/128732
Research Article

Adult-Brain-Derived Neural Stem Cells Grafting into a Vein Bridge Increases Postlesional Recovery and Regeneration in a Peripheral Nerve of Adult Pig

1Unité de Chirurgie et Physiologie Expérimentale (UCPE), Institut de Médecine Tropicale, 58 boulevard Charles Livon, 13007 Marseille, France
2Unité Physiologie de la Reproduction et des Comportements, UMR 85, Centre INRA de Tours, 37380 Nouzilly, France
3Laboratoire d'Ecologie fonctionnelle, Bâtiment 4R3, 118 route de Narbonne, 31062 Toulouse cedex 9, France
4Unité de Rétrovirologie, U421 INSERM, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon cedex 07, France

Received 15 August 2011; Revised 6 October 2011; Accepted 7 October 2011

Academic Editor: Henry J. Klassen

Copyright © 2012 Olivier Liard et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Noble, C. A. Munro, V. S. S. V. Prasad, and R. Midha, “Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries,” Journal of Trauma, vol. 45, no. 1, pp. 116–122, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. J. A. Kouyoumdjian, “Peripheral nerve injuries: a retrospective survey of 456 cases,” Muscle and Nerve, vol. 34, no. 6, pp. 785–788, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. M. N. Ahrari, N. Zangiabadi, A. Asadi, and A. Sarafi Nejad, “Prevalence and distribution of peripheral nerve injuries in victims of Bam earthquake,” Electromyography and Clinical Neurophysiology, vol. 46, no. 1, pp. 59–62, 2006. View at Google Scholar · View at Scopus
  4. M. Etienne, C. Powell, and B. Faux, “Disaster relief in Haiti: a perspective from the neurologists on the USNS COMFORT,” The Lancet Neurology, vol. 9, no. 5, pp. 461–463, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Charuluxananan, P. Bunburaphong, L. Tuchinda, P. Vorapaluk, and O. Kyokong, “Anesthesia for Indian Ocean tsunami-affected patients at a southern Thailand provincial hospital,” Acta Anaesthesiologica Scandinavica, vol. 50, no. 3, pp. 320–323, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. M. O. Hansen, D. W. Polly, K. A. McHale, and L. M. Asplund, “A prospective evaluation of orthopedic patients evacuated from Operations Desert Shield and Desert Storm: the Walter Reed experience,” Military Medicine, vol. 159, no. 5, pp. 376–380, 1994. View at Google Scholar · View at Scopus
  7. J. Nanobashvili, T. Kopadze, M. Tvaladze, T. Buachidze, and G. Nazvlishvili, “War injuries of major extremity arteries,” World Journal of Surgery, vol. 27, no. 2, pp. 134–139, 2003. View at Google Scholar · View at Scopus
  8. M. E. Kett and S. J. Mannion, “Managing the health effects of the explosive remnants of war,” Journal of The Royal Society for the Promotion of Health, vol. 124, no. 6, pp. 262–267, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. H. J. Seddon, “Three types of nerve injury,” Brain, vol. 66, no. 4, pp. 237–288, 1943. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Sunderland, “A classification of peripheral nerve injuries producing loss of function,” Brain, vol. 74, no. 4, pp. 491–516, 1951. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Sunderland, “The anatomy and physiology of nerve injury,” Muscle and Nerve, vol. 13, no. 9, pp. 771–784, 1990. View at Publisher · View at Google Scholar · View at Scopus
  12. S. E. Mackinnon and A. L. Dellon, “A comparison of nerve regeneration across a sural nerve graft and a vascularized pseudosheath,” Journal of Hand Surgery, vol. 13, no. 6, pp. 935–942, 1988. View at Google Scholar · View at Scopus
  13. B. C. Cooley, “History of vein grafting,” Microsurgery, vol. 18, no. 4, pp. 234–236, 1998. View at Google Scholar · View at Scopus
  14. K. L. Colen, M. Choi, and D. T. Chiu, “Nerve grafts and conduits,” Plastic and Reconstructive Surgery, vol. 124, no. 6 supplement, pp. 386–394, 2009. View at Google Scholar
  15. N. Lago and X. Navarro, “Correlation between target reinnervation and distribution of motor axons in the injured rat sciatic nerve,” Journal of Neurotrauma, vol. 23, no. 2, pp. 227–240, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Z. Ray and S. E. Mackinnon, “Management of nerve gaps: autografts, allografts, nerve transfers, and end-to-side neurorrhaphy,” Experimental Neurology, vol. 223, no. 1, pp. 77–85, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Yoshii and M. Oka, “Collagen filaments as a scaffold for nerve regeneration,” Journal of Biomedical Materials Research, vol. 56, no. 3, pp. 400–405, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. D. F. Kalbermatten, P. J. Kingham, D. Mahay et al., “Fibrin matrix for suspension of regenerative cells in an artificial nerve conduit,” Journal of Plastic, Reconstructive and Aesthetic Surgery, vol. 61, no. 6, pp. 669–675, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Zhang, H. Luo, Z. Zhang et al., “A nerve graft constructed with xenogeneic acellular nerve matrix and autologous adipose-derived mesenchymal stem cells,” Biomaterials, vol. 31, no. 20, pp. 5312–5324, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. L. A. Pfister, M. Papaloïzos, H. P. Merkle, and B. Gander, “Nerve conduits and growth factor delivery in peripheral nerve repair,” Journal of the Peripheral Nervous System, vol. 12, no. 2, pp. 65–82, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Timmer, S. Robben, and F. Muller-Ostermeyer, “Axonal regeneration across long gaps in silicone chambers filled with Schwann cells overexpressing high molecular weight FGF-2,” Cell Transplantation, vol. 12, no. 3, pp. 265–277, 2003. View at Google Scholar
  22. B. Hood, H. B. Levene, and A. D. Levi, “Transplantation of autologous Schwann cells for the repair of segmental peripheral nerve defects,” Neurosurgical Focus, vol. 26, no. 2, article E4, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. E Verdu, X Narvarro, G Gudino-Cabrera et al., “Olfactory bulb ensheathing cells enhance peripheral nerve regeneration,” Neuroreport, vol. 10, pp. 1097–1101, 1999. View at Google Scholar
  24. S. Walsh and R. Midha, “Use of stem cells to augment nerve injury repair,” Neurosurgery, vol. 65, no. 4, pp. A80–A86, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Moyse, S. Segura, O. Liard, S. Mahaut, and N. Mechawar, “Microenvironmental determinants of adult neural stem cell proliferation and lineage commitment in the healthy and injured central nervous system,” Current Stem Cell Research and Therapy, vol. 3, no. 3, pp. 163–184, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Vodicka, K. Smetana Jr., B. Dvorankova et al., “The miniature pig as an animal model in biomedical research,” Annals of the New York Academy of Sciences, vol. 1049, pp. 161–171, 2005. View at Google Scholar
  27. O. Liard, S. Segura, A. Pascual, P. Gaudreau, T. Fusai, and E. Moyse, “In vitro isolation of neural precursor cells from the adult pig subventricular zone,” Journal of Neuroscience Methods, vol. 182, no. 2, pp. 172–179, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. P. E. Mangeot, K. Duperrier, D. Nègre et al., “High levels of transduction of human dendritic cells with optimized SIV vectors,” Molecular Therapy, vol. 5, no. 3, pp. 283–290, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. D. T. W. Chiu, I. Janecka, and T. J. Krizek, “Autogenous vein graft as a conduit for nerve regeneration,” Surgery, vol. 91, no. 2, pp. 226–233, 1982. View at Google Scholar · View at Scopus
  30. D. T. W. Chiu and B. Strauch, “A prospective clinical evaluation of autogenous vein grafts used as a nerve conduit for distal sensory nerve defects of 3 cm or less,” Plastic and Reconstructive Surgery, vol. 86, no. 5, pp. 928–934, 1990. View at Google Scholar · View at Scopus
  31. G. Risitano, G. Cavallaro, T. Merrino, S. Coppolin, and F. Ruggeri, “Clinical results and thoughts on sensory nerve repair by autologous vein graft in emergency hand reconstruction,” Chirurgie de la Main, vol. 21, no. 3, pp. 194–197, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Kaufman, P. Cole, and L. Hollier, “Peripheral nerve injuries of the pediatric hand: issues in diagnosis and management,” Journal of Craniofacial Surgery, vol. 20, no. 4, pp. 1011–1015, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. H. I. Acar, A. Comert, H. Ozer et al., “Femoral seating position of the EndoButton in single incision anterior cruciate ligament reconstruction: an anatomical study,” Surgical and Radiologic Anatomy, vol. 30, no. 8, pp. 639–643, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. B. Manasseri, S. Raimondo, S. Geuna, G. Risitano, and F. S. D'Alcontres, “Ulnar nerve repair by end-to-side neurorrhaphy on the median nerve with interposition of a vein: an experimental study,” Microsurgery, vol. 27, no. 1, pp. 27–31, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. H. Lee and S. J. Shieh, “Secondary nerve reconstruction using vein conduit grafts for neglected digital nerve injuries,” Microsurgery, vol. 28, no. 6, pp. 436–440, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. B. A. Reynolds and S. Weiss, “Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system,” Science, vol. 255, no. 5052, pp. 1707–1710, 1992. View at Google Scholar · View at Scopus
  37. S. A. Louis, R. L. Rietze, L. Deleyrolle et al., “Enumeration of neural stem and progenitor cells in the neural colony-forming cell assay,” Stem Cells, vol. 26, no. 4, pp. 988–996, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Bennett, M. Yang, G. Enikolopov, and L. Iacovitti, “Circumventricular organs: a novel site of neural stem cells in the adult brain,” Molecular and Cellular Neuroscience, vol. 41, no. 3, pp. 337–347, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Belvindrah, F. Lazarini, and P. M. Lledo, “Postnatal neurogenesis: from neuroblast migration to neuronal integration,” Reviews in the Neurosciences, vol. 20, no. 5-6, pp. 331–346, 2009. View at Google Scholar · View at Scopus
  40. M. Tavazoie, L. Van der Veken, V. Silva-Vargas et al., “A specialized vascular niche for adult neural stem cells,” Cell Stem Cell, vol. 3, no. 3, pp. 279–288, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. J. S. Goldberg and K. K. Hirschi, “Diverse roles of the vasculature within the neural stem cell niche,” Regenerative Medicine, vol. 4, no. 6, pp. 879–897, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Schänzer, F. P. Wachs, D. Wilhelm et al., “Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor,” Brain Pathology, vol. 14, no. 3, pp. 237–248, 2004. View at Google Scholar · View at Scopus
  43. L. S. Shihabuddin, P. J. Horner, J. Ray, and F. H. Gage, “Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus,” Journal of Neuroscience, vol. 20, no. 23, pp. 8727–8735, 2000. View at Google Scholar · View at Scopus
  44. J. H. Huang, D. K. Cullen, K. D. Browne et al., “Long-term survival and integration of transplanted engineered nervous tissue constructs promotes peripheral nerve regeneration,” Tissue Engineering A, vol. 15, no. 7, pp. 1677–1685, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. J. F. Bonner, T. M. Connors, W. F. Silverman, D. P. Kowalski, M. A. Lemay, and I. Fischer, “Grafted neural progenitors integrate and restore synaptic connectivity across the injured spinal cord,” The Journal of Neuroscience, vol. 31, no. 12, pp. 4675–4686, 2011. View at Google Scholar
  46. T. Murakami, Y. Fujimoto, Y. Yasunaga et al., “Transplanted neuronal progenitor cells in a peripheral nerve gap promote nerve repair,” Brain Research, vol. 974, no. 1-2, pp. 17–24, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. T. B. Seo, M. J. Oh, B. G. You et al., “ERK1/2-mediated schwann cell proliferation in the regenerating sciatic nerve by treadmill training,” Journal of Neurotrauma, vol. 26, no. 10, pp. 1733–1744, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. R. Mi, Y. Luo, J. Cai, T. L. Limke, M. S. Rao, and A. Höke, “Immortalized neural stem cells differ from nonimmortalized cortical neurospheres and cerebellar granule cell progenitors,” Experimental Neurology, vol. 194, no. 2, pp. 301–319, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. T. S. Johnson, A. C. O'Neill, P. M. Motarjem, J. Nazzal, M. Randolph, and J. M. Winograd, “Tumor formation following murine neural precursor cell transplantation in a rat peripheral nerve injury model,” Journal of Reconstructive Microsurgery, vol. 24, no. 8, pp. 545–550, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. C. Foroni, R. Galli, B. Cipelletti et al., “Resilience to transformation and inherent genetic and functional stability of adult neural stem cells ex vivo,” Cancer Research, vol. 67, no. 8, pp. 3725–3733, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. H. Zhang, Y. T. Wei, K. S. Tsang et al., “Implantation of neural stem cells embedded in hyaluronic acid and collagen composite conduit promotes regeneration in a rabbit facial nerve injury model,” Journal of Translational Medicine, vol. 6, article no. 67, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. C. Y. Tseng, G. Hu, R. T. Ambron, and D. T. W. Chiu, “Histologic analysis of Schwann cell migration and peripheral nerve regeneration in the autogenous venous nerve conduit (AVNC),” Journal of Reconstructive Microsurgery, vol. 19, no. 5, pp. 331–339, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Xiao, K. M. Klueber, C. Lu et al., “Human adult olfactory neural progenitors rescue axotomized rodent rubrospinal neurons and promote functional recovery,” Experimental Neurology, vol. 194, no. 1, pp. 12–30, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. S. R. Chirasani, A. Sternjak, P. Wend et al., “Bone morphogenetic protein-7 release from endogenous neural precursor cells suppresses the tumourigenicity of stem-like glioblastoma cells,” Brain, vol. 133, no. 7, pp. 1961–1972, 2010. View at Publisher · View at Google Scholar · View at Scopus