Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2012, Article ID 303724, 7 pages
http://dx.doi.org/10.1155/2012/303724
Review Article

Most British Surgeons Would Consider Using a Tissue-Engineered Anterior Cruciate Ligament: A Questionnaire Study

1School of Materials, Materials Science Centre, The University of Manchester, Manchester M1 7HS, UK
2Centre for Sports and Exercise Medicine, Institute of Health Sciences Education, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Mile End Hospital, 275 Bancroft Road, London E1 4DG, England, UK

Received 17 October 2011; Accepted 21 November 2011

Academic Editor: Umile Longo

Copyright © 2012 Sarah Rathbone et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Woo, S. D. Abramowitch, R. Kilger, and R. Liang, “Biomechanics of knee ligaments: injury, healing, and repair,” Journal of Biomechanics, vol. 39, no. 1, pp. 1–20, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. L. Beasley, D. E. Weiland, A. F. Vidal et al., “Anterior cruciate ligament reconstruction: a literature review of the anatomy, biomechanics, surgical considerations, and clinical outcomes,” Operative Techniques in Orthopaedics, vol. 15, no. 1, pp. 5–19, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Goulet et al., Principles of Tissue Engineering. The Need for Bioengineered Tendons & Ligaments, Edited by R. Lanza, R. Langer, and W. Chick, RG Landes Company, 1997.
  4. F. Van Eijk, D. B. F. Saris, J. Riesle et al., “Tissue engineering of ligaments: a comparison of bone marrow stromal cells, anterior cruciate ligament, and skin fibroblasts as cell source,” Tissue Engineering, vol. 10, no. 5-6, pp. 893–903, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. J. Cooper, H. H. Lu, F. K. Ko, J. W. Freeman, and C. T. Laurencin, “Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation,” Biomaterials, vol. 26, no. 13, pp. 1523–1532, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. M. Hairfield-Stein, C. England, H. J. Paek et al., “Development of self-assembled, tissue-engineered ligament from bone marrow stromal cells,” Tissue Engineering, vol. 13, no. 4, pp. 703–710, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Vergis and J. Gillquist, “Graft failure in intra-articular anterior cruciate ligament reconstructions: a review of the literature. Arthroscopy,” The Journal of Arthroscopic and Related Surgery, vol. 11, pp. 312–321, 1995. View at Google Scholar
  8. G. Vunjak-Novakovic, G. Altman, R. Horan, and D. L. Kaplan, “Tissue engineering of ligaments,” Annual Review of Biomedical Engineering, vol. 6, pp. 131–156, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. I. Ahmed, C. A. Collins, M. P. Lewis, I. Olsen, and J. C. Knowles, “Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering,” Biomaterials, vol. 25, no. 16, pp. 3223–3232, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. R. Mascarenhas and P. MacDonald, “Anterior cruciate ligament reconstruction: a look at prosthetics—past, present and possible future,” Journal of Medicine, vol. 11, no. 1, pp. 29–37, 2008. View at Google Scholar · View at Scopus
  11. R. Lanza, R. Langer, and J. Vacanti, Principles of Bone Tissue Engineering—Tendons & Ligaments, E. Inc., 3rd edition, 2007.
  12. D. Nesic, R. Whiteside, M. Brittberg, D. Wendt, I. Martin, and P. Mainil-Varlet, “Cartilage tissue engineering for degenerative joint disease,” Advanced Drug Delivery Reviews, vol. 58, no. 2, pp. 300–322, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. S. Rathbone and S. Cartmell, “Tissue engineering of a ligament,” in Regenerative Medicine and Tissue Engineering; From Cells to Organs / Book 2, D. Eberli, Ed., Intech, 2011. View at Google Scholar
  14. S. Rathbone, P. Furrer, J. Lübben, M. Zinn, and S. Cartmell, “Biocompatibility of polyhydroxyalkanoate as a potential material for ligament and tendon scaffold material,” Journal of Biomedical Materials Research A, vol. 93, no. 4, pp. 1391–1403, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. F. Franceschi, U. G. Longo, L. Ruzzini, R. Papalia, N. Maffulli, and V. Denaro, “Quadriceps tendon-patellar bone autograft for anterior cruciate ligament reconstruction: a technical note,” Bulletin of the NYU Hospital for Joint Diseases, vol. 66, no. 2, pp. 120–123, 2008. View at Google Scholar · View at Scopus
  16. L. Osti, R. Papalia, A. Del Buono, F. Leonardi, V. Denaro, and N. Maffulli, “Surgery for ACL deficiency in patients over 50,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 19, no. 3, pp. 412–417, 2011. View at Publisher · View at Google Scholar · View at PubMed
  17. U. G. Longo, S. Buchmann, E. Franceschetti, N. Maffulli, and V. Denaro, “A systematic review of single-bundled versus double-bundle anterior cruciate ligament reconstruction,” British Medical Bulletin. In press.
  18. U. G. Longo, J. B. King, V. Denaro, and N. Maffulli, “Double-bundle arthroscopic reconstruction of the anterior cruciate ligament: does the evidence add up?” Journal of Bone and Joint Surgery B, vol. 90, no. 8, pp. 995–999, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus